Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 215

Liczba wyników na stronie
first rewind previous Strona / 11 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  implants
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 11 next fast forward last
EN
The article presents an overview of currently used polymer materials in various areas of medicine. Most often, polymeric materials are used in the production of medical equipment, cardiology, surgery, dentistry. They are mainly used, among others for the production of gloves, surgical sutures, various type of containers, specula or drip. Currently, by using additive manufacturing techniques, anatomical models of bone structures, surgical templates and implants are made of polymer materials. Thanks to their use, it is possible to significantly reduce the duration of the procedure and increase its precision. By using biodegradable polymers, it is possible to regenerate or replace damaged or diseased tissues or organs. Based on the analysis carried out, huge progress was noted in the use of polymeric materials in the field of medicine through the use of additive methods. However, there is a need for further synthesis of new and modification of existing polymers in the aspect of contact with the patient’s body.
PL
Artykuł stanowi przegląd materiałów polimerowych wykorzystywanych obecnie w różnych obszarach medycyny. Najczęściej materiały te znajdują zastosowanie w produkcji sprzętu medycznego, w kardiologii, chirurgii, stomatologii, głównie do produkcji rękawiczek, nici chirurgicznych, różnego rodzaju pojemników, wzierników, kroplówek. Obecnie, dzięki zastosowaniu przyrostowych technik wytwarzania, z materiałów polimerowych są wykonywane modele anatomiczne struktur kostnych, szablony chirurgiczne oraz implanty. Ich użycie umożliwia znaczne zredukowanie czasu przeprowadzania zabiegu oraz zwiększenie jego precyzji. Wykorzystanie polimerów biodegradowalnych pozwala na zregenerowanie albo zastąpienie uszkodzonych lub zmienionych chorobowo tkanek i organów. Na podstawie przeprowadzonej analizy stwierdzono ogromny postęp w zakresie stosowania materiałów polimerowych w obszarze medycyny dzięki wykorzystaniu metod przyrostowych. Nadal jednak istnieje potrzeba opracowywania metod syntezy nowych oraz modyfikacji już istniejących polimerów, predestynowanych do aplikacji, w których mają one styczność z organizmem pacjenta.
PL
W niniejszej pracy przedstawiono analizę właściwości antykorozyjnych powłok silanowych osadzonych na tytanie Grade 2 i stopie tytanu Ti6Al4V. Do nałożenia powłok składających się z winylotrójmetoksysilanu (VTMS), etanolu (EtOH) oraz kwasu octowego (AcOH) wykorzystano metodę zanurzeniową. Przeanalizowano wpływ stężenia VTMS na odporność na korozję tytanu i jego stopu. Odporność na korozję nałożonych powłok analizowano w środowisku siarczanowym (pH=2) oraz w płynie Ringera (pH≈6), za pomocą krzywych potencjodynamicznych. Analizowano morfologię powierzchni i mikrostrukturę przy wykorzystaniu skaningowego mikroskopu elektronowego oraz mikroskopu optycznego oraz sprawdzono przyczepność powłok do podłoża przy pomocy taśmy ScotchTM.
EN
This paper presents the results of anti-corrosive properties of silane coatings deposited on titanium Grade 2 and the Ti6Al4V titanium alloy. The dip method was used to apply the coatings consisting of vinyltrimethoxysilane (VTMS), ethanol (EtOH) and acetic acid (AcOH). The influence of VTMS concentration on the corrosive properties of titanium and its alloy was analyzed. The protective properties of the applied coatings were analyzed in the sulphate environment (pH = 2) and in the Ringer’s liquid (pH≈6). The corrosion resistance of the produced coatings was assessed using potentiodynamic curves. Surface morphology and microstructure were analyzed using a scanning electron microscope and an optical microscope, and the adhesion of coatings to the substrate was checked using ScotchTM tape.
PL
Za pomocą promieniowania jonizującego można korzystnie modyfikować właściwości materiałów polimerowych. Planując wykorzystanie naturalnych i syntetycznych polimerów w wyrobach medycznych i implantach chirurgicznych, należy pamiętać, że powinny być one wolne od wegetatywnych, przetrwalnikowych oraz zarodnikowych form mikroorganizmów. Techniki radiacyjne są unikatowymi metodami sterylizacji pozwalającymi w krótkim czasie wyjaławiać materiał w całej objętości, w dowolnej temperaturze (również warunkach kriogenicznych), w opakowaniu jednostkowym i zbiorczym. Co istotne, w odróżnieniu od tradycyjnych metod chemicznych (gazowych) działanie promieniowania jonizującego nie pozostawia szkodliwych zanieczyszczeń. Temat jest stale aktualny w związku z postępem w dziedzinie konstrukcji źródeł promieniowania jonizującego oraz pojawianiem się nowych tworzyw sztucznych. W szczególności zwrócono uwagę na radiolizę znajdujących coraz więcej zastosowań tworzyw biodegradowalnych. Jako przykład omówiono materiały komórkowe (pianki) na bazie polilaktydu (PLA) i polikaprolaktonu (PCL). W tym przypadku wielkością dawki pochłoniętej promieniowania można kontrolować (skracać) czas ich biowchłanialności. Wspomniano również o badaniach nad nowymi kompozytami typu polimer/metal wykorzystywanymi w ochronie radiologicznej, radiacyjnej polimeryzacji, którą można prowadzić bez inicjatorów i/lub katalizatorów oraz o modyfikacji powierzchni polimerów.
EN
Ionizing radiation can advantageously modify the properties of polymeric materials. When planning the use of natural and synthetic polymers in medical devices and surgical implants, it should be remembered that they should be free of vegetative, spore and spore forms of microorganisms. Radiation techniques are unique sterilization methods that quickly sterilize the material in its entire volume at any temperature (including cryogenic conditions), in unit and collective packaging. Importantly, unlike traditional chemical (gas) methods, ionizing radiation does not leave harmful contaminants. The topic is constantly relevant in connection with the progress in the field of construction of ionizing radiation sources and the emergence of new plastics. In particular, attention has been paid to the radiolysis of more and more applications of biodegradable plastics. As an example, cell materials (foams) based on polylactide (PLA) and polycaprolactone (PCL) are discussed. In this case, the amount of radiation absorbed dose can be controlled (shortened) their biosorbability time. The following were also mentioned – the research on new polymer/metal composites used in radiation protection, radiation polymerization that can be carried out without initiators and/or catalysts, and modification of polymer surfaces by tacking.
first rewind previous Strona / 11 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.