Introduction and aim: The paper presents the analytical and numerical algorithm of solving linear nonhomogeneous equations of the first order with constant coefficients. The aim of the work is to show the algorithms for solving equations both analytically and numerically. The additional aim is to show numerical algorithms and graphical interpretation of solutions. Material and methods: For selected equations, from the subject literature, constant variation method has been presented. Results: The paper presents the selected linear non-homogeneous equations of the first order with constant coefficients containing exponential, polynomial and trigonometric functions. Conclusion: Taking into account the constant variation method it is possible to solve the first order linear non-homogeneous differential equations. However, using the Mathematica program for numerical solution, you can quickly get a solution and create a graphical interpretation of solutions.
PL
Wstęp i cel: W pracy pokazano algorytmy analityczny i numeryczny rozwiązywania równań różniczkowych liniowych niejednorodnych pierwszego rzędu o stałych współczynnikach. Celem pracy jest pokazanie algorytmu rozwiązywania równań zarówno sposobem analitycznym jak i numerycznych. Ponadto również dodatkowym celem jest pokazanie algorytmów numerycznych oraz interpretacji graficznej rozwiązań. Materiał i metody: Dla wybranych równań, z literatury przedmiotu, zastosowano metodę wariacji stałej. Wyniki: W pracy opracowano wybrane równania różniczkowe liniowe niejednorodne pierwszego rzędu o stałych współczynnikach zawierających funkcje wykładnicze, wielomianowe i trygonometryczne. Wniosek: Stosując metodę uzmienniania stałej jest możliwe rozwiązywanie równań różniczkowych liniowych niejednorodnych pierwszego rzędu o stałych współczynnikach. Natomiast wykorzystując do numerycznego rozwiązywania program Mathematica można szybko uzyskać rozwiązanie oraz sporządzić interpretację graficzną rozwiązań.
Introduction and aim: The paper presents the analytical and numerical algorithm of solving linear nonhomogeneous equations of the second order with constant coefficients. The aim of the work is to show the algorithms for solving equations both analytically and numerically. The additional aim is to show numerical algorithms and graphical interpretation of solutions. Material and methods: For selected equations, from the subject literature, constant variation method has been presented. Results: The paper presents the selected linear non-homogeneous equations of the second order with constant coefficients containing exponential, polynomial and trigonometric functions. Conclusion: Taking into account the constant variation method it is possible to solve the second order linear non-homogeneous differential equations. However, using the Mathematica program for numerical solution, you can quickly get a solution and create a graphical interpretation of solutions.
PL
Wstęp i cel: W pracy pokazano algorytmy analityczny i numeryczny rozwiązywania równań różniczkowych liniowych niejednorodnych drugiego rzędu o stałych współczynnikach. Celem pracy jest pokazanie algorytmu rozwiązywania równań zarówno sposobem analitycznym jak i numerycznych. Ponadto również dodatkowym celem jest pokazanie algorytmów numerycznych oraz interpretacji graficznej rozwiązań. Materiał i metody: Dla wybranych równań, z literatury przedmiotu, zastosowano metodę wariacji stałej. Wyniki: W pracy opracowano wybrane równania różniczkowe liniowe niejednorodne drugiego rzędu o stałych współczynnikach zawierających funkcje wykładnicze, wielomianowe i trygonometryczne. Wniosek: Stosując metodę uzmienniania stałej jest możliwe rozwiązywanie równań różniczkowych liniowych niejednorodnych drugiego rzędu o stałych współczynnikach. Natomiast wykorzystując do numerycznego rozwiązywania program Mathematica można szybko uzyskać rozwiązanie oraz sporządzić interpretację graficzną rozwiązań.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW