Ograniczanie wyników
Czasopisma
Autorzy
Lata
Preferencje
Język
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
Strona / 1
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  nieliniowe równania różniczkowe zwyczajne
Sortuj według:

Ogranicz wyniki do:
Strona / 1
EN
In this paper, the steady three-dimensional problem of condensation film on an inclined rotating disk is considered. The governing nonlinear partial differential equations are reduced to the nonlinear ordinary differential equations system by a similarity transform. The equation system is solved by the variation of parameters method (VPM) which is rather used to solve nonhomogeneous linear differential equations but can also be used to solve nonlinear differential equations. This method has not previously been used to solve a nonlinear condensation problem. The dimensionless velocity and temperature profiles are shown, and the influence of Prandtl number and rotation ratio on the flow field and the Nusselt number are discussed in detail. In order to assess the accuracy of the solutions obtained by this method, the problem is also solved numerically using the Matlab bvp4c solver. The validity of our solutions is verified by the numerical results.
EN
In this paper, a boundary integral method is proposed for the solution of a class of fourth-order two-boundary value problems described by the equation yiv+P(x, y, y’, y’’, y’’’) = 0, x ∈ ( 0,L), where P is a polynomial function of its arguments. The differential equation is cast in an integral form and the weighted residual technique is used to generate the corresponding boundary integral equations. The boundary integral equations are then, solved by expressing the dependent variable, y, in terms of a power series. The proposed method is tested through four examples to show the applicability of the method to solve a wide range of fourth-order differential equations including the nonlinear ones.
Strona / 1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.