Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  drive data
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The aim of the article is to present and validate a methodology for collecting road load data on a vehicle, driving on roads and analysis of a drive data signal under the wheel in the time domain, using FRF (Frequency Response Function) and the MTS 320 eight-poster inertia reacted road simulator. The elaborated drive data, was used to control the actuators forcing the movements of the wheels and the coupling part of the semi-trailer during durability tests. The road tests were carried out by registering physical variables in the time domain, by a set of sensors mounted on a vehicle. The data was collected from roads categorized as motorways, national and local roads. Differences between the variability of the parameters, collected on the roads and the variability of the drive data under the wheel, were determined for the particular types of roads, for loaded and unloaded vehicle. The obtained accuracy of reconstruction of the road load data conditions was as high as 97%. Therefore, the proposed method is suitable for reliable durability tests with use of the road simulator.
EN
With the current trend of increasing automation, leading to self-organizing machine tools and production machines (“Industry 4.0”), data acquisition and processing becomes more and more important. Based on these data, new monitoring functions and identification methods can be implemented in the machine control. Depending on the algorithms, also drive internal data, such as the actual torque, or the power consumption of the machine axes are required, partially at high sample rates. State of the art computerized numerical controllers (e.g. SIEMENS 840D sl) however, are characterized by a separation of drive system and controller. Drive data, which is not included in the standard bus-connection are difficult to access by the superordinated CNC. The paper addresses this problem, presents and compares various concepts of drive data transfer to a standard industrial CNC/PLC. Subsequently, the most convenient method, which utilizes a drive-internal data recorder is chosen for implementation. It offers flexible drive data acquisition through the PLC at high sample rates, carried out block wise. Experimental results are shown to prove the functionality. Finally, ideas for continuative monitoring and identification methods are discussed.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.