Przedstawiono wybrane metody doboru nastaw PID dla regulatora kursu w autopilocie statku. Spójność projektowania jest możliwa dzięki temu, że zastosowano model Nomoto dla statku oraz dzięki eliminacji przez regulator stałej czasowej obiektu, przez co układ zamknięty staje się układem 2-go rzędu. W dwóch przypadkach założono dodatkowo, że układ ten ma mieć podwójną stałą czasową, różniącą się w zadanym stosunku r od stałej czasowej obiektu. Pokazano, że tak zaprojektowany regulator kursu zapewnia przebiegi aperiodyczne krytyczne przy skokowej zmianie wartości zadanej oraz lepiej tłumi zakłócenia środowiskowe niż standardowo nastrojone regulatory.
EN
Selected methods of PID settings for the heading controller in the ship’s autopilot are presented. The consistency of the design is possible due to the fact that the Nomoto model was used for the ship and thanks to the elimination of the time constant of the object by the controller, so that the closed system becomes a 2nd order system. In two cases, it was additionally assumed that the system is to have a double time constant, differing in a given ratio r from the time constant of the object. It has been shown that the heading controller designed in this way provides critical aperiodic waveforms at a step change in the setpoint value and suppresses environmental disturbances better than standardly tuned controllers.
Autopiloty okrętowe można podzielić na konwencjonalne, zdolne jedynie do utrzymywania zadanego kursu, oraz zaawansowane, które dodatkowo mogą utrzymywać statek na „ścieżce” łączącej zadane punkty nawigacyjne na trasie. W artykule przedstawiono strukturę prototypowego autopilota statku zaimplementowanego w środowisku CPDev oraz wzory pozwalające wyznaczyć nastawy regulatora kursu (PIDH) oraz ścieżki (PIDT) w regulacji kaskadowej. Dla każdego z nich przyjęto pojedyncze parametry projektowe określające dynamikę zamkniętej pętli regulacji. Reguły te zastosowano w oprogramowaniu prototypu autopilota, stworzonego we współpracy z holenderską firmą projektującą systemy sterowania i wizualizacji dla statków.
EN
Ship autopilots can be divided into conventional, only capable of maintaining a given heading, and advanced, which can additionally follow a „track” connecting the given navigation points along the ship’s route. The article presents the structure of the prototype autopilot of the ship implemented in the CPDev environment and the formulas allowing to determine the settings of the course controller (PID) and track controller (PI) in the cascade control. For each of them, individual design parameters were adopted to define the dynamics of the closed control loop. These rules were applied in the software of the autopilot prototype, created in cooperation with a Dutch company designing control and visualization systems for ships.
Przedstawiono jednolity sposób doboru nastaw PID dla regulatora kursu i regulatora śledzenia ścieżki, które występują w kaskadowym układzie autopilota statku. Jednolitość projektowania jest możliwa dzięki temu, że w odniesieniu do każdego regulatora sterowany przez niego obiekt wygląda jak integrator ze stałą czasową. W przypadku regulatora kursu jest to znany model Nomoto. Dzięki eliminacji przez regulator stałej czasowej obiektu, układ zamknięty staje się układem 2-go rzędu. Założono, że układ ten ma mieć podwójną stałą czasową różniącą się w zadanym stosunku od stałej czasowej obiektu. Pokazano, że tak zaprojektowany regulator kursu lepiej tłumi zakłócenia środowiskowe niż regulator z wzorcowymi nastawami.
EN
Uniform approach to selection of PID settings for heading and path tracking controllers that create a cascade control system for ship autopilot is presented. Uniformity of the design follows from observation that for each of the controllers the controlled plant looks like an integrator with time constant. In case of the heading controller, the plant is represented by the known Nomoto model. Due to elimination of the plant time constant by the controller, each of the closed loop systems becomes of 2nd order. One assumes that such system should have a double time constant, different in a prescribed ratio from time constant of the controlled plant. It is shown that the heading controller designed in this way suppresses disturbances better than the controller with standard settings.
Autopiloty okrętowe można podzielić na konwencjonalne, zdolne jedynie do utrzymywania zadanego kursu, oraz zaawansowane, które dodatkowo mogą śledzić „ścieżkę” łączącą zadane punkty nawigacyjne na trasie statku. W artykule przedstawiono strukturę prototypowego autopilota statku zaimplementowanego w środowisku CPDev oraz wzory pozwalające wyznaczyć nastawy regulatora kursu (PID) oraz trasy (PI) w regulacji kaskadowej. Dla każdego z nich przyjęto pojedyncze parametry projektowe określające dynamikę zamkniętej pętli regulacji. Reguły te zastosowano w oprogramowaniu prototypu autopilota, stworzonego we współpracy z holenderską firmą projektującą systemy sterowania i wizualizacji dla statków.
EN
Ship autopilots can be divided into conventional, only capable of maintaining a given course, and advanced, which can additionally follow a “track” connecting the given navigation points along the ship’s route. The article presents the structure of the prototype autopilot of the ship implemented in the CPDev environment and the formulas allowing to determine the settings of the course controller (PID) and track controller (PI) in the cascade control. For each of them, individual design parameters were adopted to define the dynamics of the closed control loop. These rules were applied in the software of the autopilot prototype, created in cooperation with a Dutch company designing control and visualization systems for ships.
The paper presents the design of a hybrid controller used to control the movement of a ship in different operating modes, thereby improving the performance of basic maneuvers. This task requires integrating several operating modes, such as maneuvering the ship at low speeds, steering the ship at different speeds in the course or along the trajectory, and stopping the ship on the route. These modes are executed by five component controllers switched on and off by the supervisor depending on the type of operation performed. The desired route, containing the coordinates of waypoints and tasks performed along consecutive segments of the reference trajectory, is obtained by the supervisory system from the system operator. The former supports switching between component controllers and provides them with new set-points after each change in the reference trajectory segment, thereby ensuring stable operation of the entire hybrid switching controller. The study also presents designs of all controller components, which are done using a complex mathematical model of the selected ship, after its simplification depending on the type of controller. The developed control system was tested on the training ship Blue Lady and used to train captains at the Ship Handling Research and Training Center near Iława in Poland. The conducted research involved an automatic movement of the ship from one port to another. The performed transit route required the ship to leave the port, pass the water area, and berth at the port of destination. The study revealed good quality of the designed hybrid controller.
6
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Artykuł przedstawia koncepcję autonomicznego generowania trajektorii zadanej w elektronawigacyjnym układzie sterowania ruchem statku. Trajektoria ta wyznaczana jest na podstawie informacji o docelowej pozycji statku, dostarczonej przez operatora oraz sytuacji nawigacyjnej, określanej poprzez zestaw urządzeń elektronawigacyjnych. Działanie układu opiera się na wykorzystaniu algorytmów uczenia przez wzmacnianie. W artykule przedstawiono zasady działania tych algorytmów zarówno w wersji dyskretnej, jak i ciągłej – z aproksymacją przestrzeni stanu. Wyznaczana trajektoria może być realizowana w autopilocie okrętowym wyposażonym w wielowymiarowy, nieliniowy regulator kursu i położenia.
EN
The paper presents the concept of autonomous reference trajectory generation unit for the vessel motion control system. Reference trajectory is determined based on the information about the target position of the vessel, provided by the operator and navigational situation determined by the navigational equipment fitted on the vessel. The key data processing concept of the system relies on a reinforcement learning algorithms. The paper presents the principles of selected RL algorithms in both discrete and continuous domains. Trajectory determined in the proposed module can be realized in marine autopilot equipped with a multidimensional, nonlinear controller of the course and position.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.