Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 316

Liczba wyników na stronie
first rewind previous Strona / 16 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  energy storage
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 16 next fast forward last
1
Content available Praktyczne aspekty magazynowania energii
PL
Jednym z kluczowych problemów i wyzwań współczesnej cywilizacji jest efekt cieplarniany i bezpieczeństwo energetyczne (strategia Unii Europejskiej), konkurencyjność polskiej i europejskiej gospodarki oraz zmniejszenie zanieczyszczenia powietrza w miastach. Rozwój nowoczesnych baterii litowo-jonowych i poprawa zdolności magazynowania energii w bateriach ma strategiczne znaczenie dla Europy. Wojna na Ukrainie rozpoczęta w lutym 2022 r. zwróciła uwagę Europy na kwestię dywersyfikacji źródeł energii oraz konieczność inwestowania w odnawialne źródła energii. Rozpoczęto intensywne prace nad systemem energetyki rozproszonej, która nie może istnieć bez rozproszonego magazynowania energii. Kluczem do rozwoju rynku magazynów energii jest opracowanie rozwiązań w zakresie nowoczesnych elektrochemicznych metod magazynowania energii, ze szczególnym uwzględnieniem poniższych parametrów: wydajność, przyjazność dla środowiska, koszty, bezpieczeństwo. Celem niniejszego opracowania jest zaprezentowanie strategii projektowania nowego magazynu energii połączonego z instalacją fotowoltaiczną na wybranym modelowym domu, opartego na bateriach jonowo-litowych na podstawie zidentyfikowanych wyzwań technologicznych. Magazyny energii produkowane w oparciu o europejskie łańcuchy dostaw oraz o lokalną myśl techniczną przyczynią się do zwiększenia bezpieczeństwa energetycznego, rozwoju rozproszonej energetyki oraz uniezależnienia od komponentów dostarczanych z Azji. W rozdziale poruszono kwestie technologiczne związane z budową ogniw jonowo-litowych oraz poszczególnych elementów ogniw takich jak katoda, anoda oraz elektrolit. Ponadto zaprezentowane są również dane dotyczące rozwoju rynku baterii na rynku światowym oraz trendy na rynkach europejskich. Na podstawie wyróżnionych wyzwań technologicznych projektowania nowego magazynu energii zaprojektowano strategie zmierzające to pokonania trudności, a co za tym idzie, zbudowania nowego magazynu charakteryzującego się: obniżonymi kosztami produkcji, zwiększoną pojemnością, zwiększoną mocą, zwiększoną żywotnością oraz wzrostem bezpieczeństwa.
EN
One of the key problems and challenges of modern civilization is the greenhouse effect and energy security (European Union strategy), the competitiveness of the Polish and European economies and the reduction of urban air pollution. The development of modern lithium-ion batteries and the improvement of battery energy storage capacity is of strategic importance for Europe. The war in Ukraine, which began in February 2022, has drawn Europe’s attention to the issue of diversification of energy sources and the need to invest in renewable energy sources. Intensive work has begun on a distributed energy system, which cannot exist without distributed energy storage. The key to the development of the energy storage market is the development of solutions for modern electrochemical methods of energy storage, with particular attention to the following parameters: efficiency, environmental friendliness, cost, safety. The purpose of this article is to present a strategy for the design of a new energy storage combined with a photovoltaic installation on a selected model house, based on lithium ion batteries on the basis of the identified technological challenges. Energy storages produced on the basis of the European supply chain and local technical thought will contribute to increased energy security, the development of distributed energy and independence from components supplied from Asia. The article addresses technological issues related to the construction of lithium ion cells and individual cell components such as cathode, anode and electrolyte. In addition, data on the development of the battery market in the global market and trends in European markets are also presented. On the basis of the highlighted technological challenges of designing a new energy storage, strategies are designed to overcome the difficulties and thus build a new storage characterized by: reduced production costs, increased capacity, increased power, increased life and increased safety.
PL
W artykule omówiono rosnącą rolę magazynów energii w kontekście rozwoju energetyki odnawialnej i ich współpracy z szeroko rozumianym systemem elektroenergetycznym (krajowym, lokalnym, przemysłowym, wyspowym). Przedstawiono różne technologie systemów magazynowania energii: mechaniczne, elektryczne elektrochemiczne i chemiczne.
EN
The article discusses the growing role of energy storage in the context of the development of renewable energy sources and their cooperation with the broadly understood electrical power system (national, local, industrial, island). Various technologies of energy storage systems are presented: mechanical, electrical, electrochemical and chemical.
3
Content available Energy storage using compressed air
EN
The climate change is probably the greatest challenge humanity is facing today. In order to protect future generations from the catastrophic effects of the process, actions to achieve climate neutrality are being taken worldwide. These actions include development of renewable energy sources. Renewable energy depends on weather conditions, which results in a mismatch between supply and demand for energy. Use of energy storage is the technical solution to minimize this issue. The paper presents topics related to the potential storing of surplus electricity produced from renewable energy sources (RES) in the form of compressed air. The article also shows worldwide solutions for energy storage using compressed air. As part of the work, three variants of a warehouse consisting of standardly available pneumatic units were considered. The conducted analyzes made it possible to determine the energy efficiency of such a system. It can be observed that greater efficiency is achieved by using large flow compressors and the operation of the pneumatic motor at a higher supply pressure. In addition, it can also be said that the greatest losses are associated with the operation of the compressor, which generates large amounts of heat during operation. Increasing the efficiency of the energy storage system can be achieved by utilizing the heat generated in the compression process.
PL
W artykule omówione zostały wybrane rozwiązania w zakresie odzyskiwania energii z otoczenia (energy harvesting – EH) i możliwości ich zastosowania w aplikacjach elektromobilnych oraz zasilania innych odbiorników energii elektrycznej.
EN
The article discusses selected solutions in the field of energy harvesting (EH) from the environment and the possibility of using them in electromobile applications and power supply.
PL
W artykule przedstawiono kilka kluczowych zagadnień powiązanych z magazynowaniem energii w sieciach smart grid. Różnorodność zastosowania, rozpatrywana tylko poprzez przedstawione w artykule przykłady, wskazuje na to, że rola magazynów energii w sieciach energetycznych będzie rosła i będzie ona tym większa, im sieć będzie stawać się bardziej inteligentna.
EN
The article presents several key issues related to energy storage in smart grid networks. The variety of applications considered only through the examples presented in this article indicates that the role of energy storage in power grids will grow and it will be bigger the smarter the network becomes.
EN
Values of energy supply and demand vary within the same timeframe and are not equal. Consequently, to minimise the amount of energy wasted, there is a need to use various types of energy storing systems. Recently, one can observe a trend in which phase change materials (PCM) have gained popularity as materials that can store an excess of heat energy. In this research, the authors ana-lysed paraffin wax (cheese wax)’s capability as a PCM energy storing material for a low temperature energy-storage device. Due to the relatively low thermal conductivity of wax, the authors also analysed open-cell ceramic Al2O3/SiC composite foams’ (in which the PCM was dispersed) influence on heat exchange process. Thermal analysis on paraffin wax was performed, determining its specific heat in liquid and solid state, latent heat (LH) of melting, melting temperature and thermal conductivity. Thermal tests were also performed on thermal energy container (with built-in PCM and ceramic foams) for transient heat transfer. Heat transfer coefficient and value of accumulated energy amount were determined.
EN
This work demonstrates the study of the numerical modelling and a design of a compact energy generator based on green hydrogen. This generator aims allowing the energy storage, electricity, cold and heat productions as well as a supply the energy for the production of the sanitary hot water. The generator is considered to be powered by 30 solar cells panels and will mainly consist of a Proton Exchange Membrane (PEM) electrolyzer compiled with a Metal Hydride (MH) tank, a PEM fuel cell, and a system of heat exchangers sized to recover the heat from the electrolyzer, PEM fuel cell and MH tank. Furthermore, the generator will contain an adsorber to manage air conditioning (cooling and heating) and a production of the sanitary hot water. A converter block is included in the generator, in particular, a Buck-booster to raise the voltage of the solar panels and the DC-AC converter for the electricity consumption in the household. The desorption of the hydrogen contained in the tank MH will take place using the heating resistance. In overall, the designed generator is foreseen to have a dimension of 1800 × 1000 × 500 mm and its role is to allow integration of the hydrogen energy for the tertiary and residential sectors. As such it is a suitable choice of components for the cost reduction and high yield hydrogen production, storage, and consumption.
EN
Recycling of lithium-ion batteries is a response to the exploitation of natural resources of elements necessary for the production of energy storage devices and the desire to close the cycle of elements by reducing their loss. The replacement of fossil fuels by renewable energy sources will require batteries capable of storing significant amounts of energy. The effects of scientific projects on this subject are not limited to the research sphere, but have real economic, political and social consequences: independence from the supply of raw materials from distant areas or reduction of human rights violations in the case of conflict elements. Ethical and ecological supply of elements is regulated by the EU and the US, among others. Based on these premises, the article collects information on the recycling process and production of lithium-ion cells in order to illustrate the current market situation and highlight places where there are opportunities to introduce new solutions or improve processes with emphasis on the model of a circular economy.
EN
Lithium-sulfur (Li-S) cells are now attracting a lot of attention among battery scientists and engineers due to their potential for replace current Li-ion technologies as ta main energy storage chemistry. It is well known that Li-S cells operate according to a significantly different mechanisms as compared to Li-ion chemistries. In particular, upon discharge the sulfur species undergo a set of complex electrochemical transitions starting from elemental sulfur down to Li2S. In order to design a viable Li-S battery, it is of decisive importance to fully understand this complex electrochemistry that needs aprotic solvents to function. This article is concise a review of mechanisms and materials involved in state-of-the-art Li-S cells. Electrochemical processes have been described according to the latest state of research, as well as main types of cathode, anode and electrolyte materials and chemicals. Also, main scientific and technological challenges and obstacle in designing commercially viable Li-S batteries have been pointed out.
PL
Osiągnięcie zerowej emisji CO2 przez kraje UE w 2050 r. byłoby możliwe pod warunkiem przestawienia się na wytwarzanie energii elektrycznej tylko przez źródła odnawialne. W artykule wykazano, że w Polsce jest to niewykonalne. Nadwyżki energii, produkowanej bardzo nierównomiernie przez OZE, trzeba będzie magazynować poprzez wytwarzanie wodoru w procesie elektrolizy wody a następnie wykorzystanie go w energetyce (wodorowe elektrownie gazowo-parowe) i transporcie (silniki wodorowe i/lub ogniwa paliwowe). Przewidywana, dość niska sprawność tego procesu oraz potrzeba pokrycia zapotrzebowania na energię elektryczną także w okresach słabych wiatrów spowodowałyby konieczność budowy farm wiatrowych o wielkiej łącznej mocy, ogromnych kosztach i nierealnie dużej powierzchni. Z tego powodu oraz ze względu na bezpieczeństwo energetyczne w podstawie systemu elektroenergetycznego muszą pozostać źródła stabilne, sterowalne, niezależne od pory dnia, roku i od pogody. Ponieważ z założenia nie mogą to być elektrownie węglowe ani spalające gaz ziemny, konieczne będzie zbudowanie w Polsce kilku dużych elektrowni jądrowych o łącznej mocy co najmniej 10 lub 15 GW.
EN
The requirement of zero CO2 emissions by EU countries in 2050 will make it necessary to generate electricity only from renewable sources (RES). The article shows that this is completely unrealistic in Poland. Surplus electricity produced very unevenly by RES will have to be stored through the production of hydrogen in the process of water electrolysis and its use in power engineering (hydrogen gas and steam power plants) and transport (hydrogen engines and / or fuel cells). The expected, relatively low efficiency of this process and the need to cover the demand for electricity also in periods of weak winds, they will make it necessary to build wind farms with great total power, unrealistically large area and huge costs. For this reason and for the sake of energy security, stable and controllable sources must remain in the base of the power system, independent of the time of day, year and weather. Since, by definition, they cannot be coal-fired or natural gas-fired power plants, it is necessary to build several large nuclear power plants in Poland with a total capacity of at least 10 or 15 GW.
EN
The paper presents the original design of the Off-Grid PV mini-system for powering separate circuits of the residential building. The PV system was used interchangeably for comparative purposes batteries AGM and Li-Ion for energy storage. The PV system provides autonomy to separate building circuits only in the summer months, for Li-Ion energy storage, at the installation location in central Poland. An automatic power switch was used, which turned on the mains supply in the event the battery was discharged. The controller is configured in two ways for priority for solar systems set in summer or priority for the power grid in winter. The next stage of work compares the discharge times of two types of batteries, assuming constant load on the AC side of the inverter. Based on these measurements, the relative autonomy times of the PV system were estimated for the assumed load with different types of batteries in summer and winter. The time of supplying selected circuits of a residential building in the tests conducted for the Li-Ion battery to the AGM battery increased by approx. 50% and increased with increasing load.
PL
W artykule przedstawiono autorski projekt minisystemu fotowoltaicznego Off-Grid do zasilania wydzielonych obwodów budynku mieszkalnego. W systemie PV zastosowano zamiennie w celach porównawczych akumulatory AGM i Li-Ion do magazynowania energii. System PV zapewnia autonomię wydzielonych obwodów budynku tylko w miesiącach letnich, tylko dla zasobnika energii Li-Ion, w miejscu instalacji w centralnej Polsce. Zastosowano automatyczny wyłącznik zasilania, który włącza zasilanie sieciowe w przypadku rozładowania akumulatora. Sterownik jest skonfigurowany na dwa sposoby priorytet dla instalacji solarnych ustawiony w lecie lub priorytet dla sieci energetycznej w zimie. W kolejnym etapie prac przedstawiono porównanie czasów rozładowania dwóch typów akumulatorów, przy założeniu stałego obciążenia po stronie AC falownika. Na podstawie tych pomiarów oszacowano względne czasy autonomii systemu PV dla założonego obciążenia z różnymi typami akumulatorów w okresie letnim i zimowym. Czas zasilania wybranych obwodów budynku mieszkalnego w przeprowadzonych testach dla akumulatora Li-Ion w stosunku do akumulatora AGM wzrósł o ok. 50% i zwiększał się wraz ze wzrostem obciążenia.
PL
W artykule rozpatrzono możliwości zastosowania zasobników energii z płynną solą w systemach energetycznych, które przechodzą przemiany w kierunku ograniczenia liczby wytwórczych jednostek węglowych. Na przestrzeni ostatnich lat wspomniane zasobniki stały się popularne w krajach o wysokim nasłonecznieniu. Niniejszy artykuł przedstawia analizę wykorzystania magazynów energii dla innych szerokości geograficznych. Rozpatruje się przy tym dodatkowe rozwiązania, odpowiednie dla systemów energetycznych, które przechodzą transformację ukierunkowaną na zmniejszenie spalania paliw kopalnych.
EN
The paper presents an analysis on the possible applications of molten salt energy storages to power systems that undergo transformations, which aim to reduce the number of fossil fueled power generating units. In the recent years the salt storages have become popular in the countries of high solar irradiance. This paper focuses on the applications of these storages in the areas of other latitudes. Additional designs are under the investigation that are suitable for the power systems where the usage of the fossil fuels is continuously being decreased.
PL
Nadwyżki energii elektrycznej wytworzonej przez OZE w okresach silnych wiatrów i/lub dużego nasłonecznienia powinny być magazynowane w postaci wodoru wyprodukowanego w procesie elektrolizy wody, w celu ich wykorzystania do produkcji energii elektrycznej w okresach słabych i bardzo słabych wiatrów przy równocześnie możliwym dużym zachmurzeniu. Oszacowano ilości energii elektrycznej, jakie magazyny powinny dostarczyć do sieci elektroenergetycznej, dla modeli energetyki w 2050 r. różniących się mocami morskich farm wiatrowych oraz elektrowni jądrowych pracujących w podstawie systemu elektroenergetycznego. Oceniono niezbędne pojemności magazynów wodoru i pokazano, że jedyny racjonalny sposób jego magazynowania to podziemne kawerny solne, które można wykonać w istniejących w Polsce wysadach solnych i pokładach soli kamiennej. Potwierdzono konieczność zbudowania, oprócz OZE, także elektrowni jądrowych o mocy co najmniej 15 GW oraz nie powiększania zapotrzebowania na energię elektryczną ponad 225 TWh/a.
EN
Surplus of electricity generated by RES in periods of strong winds and / or high sun exposure should be store in the form of hydrogen produced in the electrolysis of water, in order to use them for the production of electricity during periods of weak and very weak winds with possible high cloudiness. The amounts of electricity, that the energy storage facilities should deliver to the grid (in the output), were estimated for the power engineering models in 2050 with different capacities of offshore wind farms and nuclear power plants working on the basis of the power system. The necessary capacity of hydrogen storage facilities was assessed and it was shown that the only rational method of its storage are underground salt caverns to be constructed in the salt dome and rock salt deposits existing in Poland. The need to build, in addition to RES, also nuclear power plants with a capacity of at least 15 GW and not to increase the demand for electricity over 225 TWh was confirmed.
PL
Postępujący w ostatnich latach proces dekarbonizacji i zwiększania udziału, często niestabilnych źródeł OZE w rynku energii jest przyczyną nieustannych poszukiwań coraz sprawniejszych, tańszych, pojemniejszych i trwalszych magazynów energii powstającej w okresie jej nadpodaży. W artykule zaprezentowano dotychczasowe rezultaty prac nad koncepcją systemu izobarycznych zbiorników na dwutlenek węgla. System ten jest przedmiotem zgłoszenia patentowego w Urzędzie Patentowym RP pod numerem P.437305 i ma stać się komponentem systemów magazynowania energii o średniej skali, gdzie jako nośnik energii stosowany będzie dwutlenek węgla. Idea takich magazynów oparta jest o przemianę energii elektrycznej w energię potencjalną sprężonego gazu, a następnie odzyskanie tak zgromadzonej energii poprzez odwrócenie kierunku procesu, to jest rozprężenie zmagazynowanego dwutlenku węgla w ekspanderze, dzięki czemu zmagazynowana energia oddawana jest ponownie do sieci w czasie niedoboru energii elektrycznej. W artykule przedstawiono zasadę działania systemu izobarycznych zbiorników, jego budowę i komponenty oraz założenia przyjęte w koncepcji. Zaprezentowano także wyniki pracy nad algorytmem pozwalającym dobrać cechy geometryczne poszczególnych komponentów układu izobarycznego.
EN
The progressive decarbonization process and increasing share of unstable renewable energy sources in the energy market in recent years is the reason for continuous search for more efficient, cheaper, more capacious and more durable energy storage facilities. The paper presents the results of work on the concept of a system of isobaric carbon dioxide tanks. This system is subject to patent application in the Patent Office of the Republic of Poland under number P.437305 and is to become a component of energy storage systems, where carbon dioxide will be used as an energy carrier. The idea of such storages is based on the transformation of electric energy into the potential energy of compressed gas and then recovering the stored energy by reversing the direction of the process, i.e. expanding the stored carbon dioxide in the expander, thanks to which the stored energy is given back to the grid during a shortage of electric energy. This paper presents the principle of the isobaric storage system, its structure and components, and the assumptions made in the concept. The results of work on the algorithm allowing the selection of geometric features of individual components of the isobaric system are also presented.
PL
W artykule opisano stanowisko reaktora metanizacji znajdujące się w Katerze Maszyn i Urządzeń Energetycznych Politechniki Śląskiej. Przedstawiono wyniki badań z pierwotnie zaprojektowanego stanowiska laboratoryjnego zaopatrzonego w katalizator w postaci pyłu niklowego, który charakteryzował się duża bezwładnością cieplną. Opisano proces modernizacji stanowiska badawczego, pozwalający na zmniejszenie inercji cieplnej badanego układu oraz porównano wyniki badań otrzymane przed i po procesie modernizacji układu.
EN
The paper describes the laboratory stand of the methanation reactor located in the Department of Power Engineering and Turbomachinery at the Silesian University of Technology. The article presents the results of laboratory research from the originally designed laboratory stand equipped with a catalyst in the form of nickel dust, which was characterized by high thermal inertia. The process of modernization of the test stand was described, allowing to reduce the thermal inertia of the tested system. The test results obtained before and after the modernization of the system were compared.
PL
Systemy OZE charakteryzują się niestabilna pracą, co wymaga budowy systemów magazynowania energii. Jednym ze sposobów takiego magazynowania są instalacje elektrowni szczytowo pompowych. Wadą takich magazynów jest istotna ingerencja w środowisko naturalne. Likwidacja podziemnych kopalń węgla kamiennego stwarza możliwość budowy podziemnej elektrowni szczytowo pompowej. W artykule przedstawiono rozważania dotyczące budowy instalacji prototypowej UPSH. Analiza zagrożeń na etapie projektu przyczyni się do ograniczenia negatywnych skutków działania inwestycji.
EN
RES systems are characterized by unstable operation, which requires the construction of energy storage systems. One of the methods of such storage are the installations of pumped storage power plants. The disadvantage of such warehouses is a significant interference in the natural environment. Closure of underground hard coal mines makes it possible to build an underground pumped storage power plant. The article presents considerations concerning the construction of a prototype UPSH installation. Risk analysis at the design stage will contribute to limiting the negative effects of the investment.
PL
Wraz ze wzrostem zainteresowania wodorem oraz ze względu na jego duże zapotrzebowanie w wielu gałęziach gospodarki prowadzone są liczne badania naukowe dotyczące metod oraz technologii wytwarzania wodoru. Zwiększona skala produkcji H2 wpływa na konieczność opracowania nowych rozwiązań pozwalających na bezpieczne i efektywne magazynowanie wodoru. Ze względu na właściwości fizyczne wodoru, sam proces jego magazynowania jest kłopotliwy, dlatego najczęściej przechowywany jest on pod postacią skroploną, sprężoną do wysokiego ciśnienia. Stosunkowo nowe rozwiązania wodoru oparte jest na wykorzystaniu w tym celu wodorków metali oraz zbiorników z powłokami adsorbującymi. W artykule przedstawiono wyniki badań laboratoryjnych dla dwóch zbiorników adsorpcyjnych o pojemności znamionowej wynoszącej 800 dm3 n. Badania były prowadzone dla dwóch temperatur wynoszących odpowiednio 20 °C i 10 °C. Temperatura zbiornika wodoru była stabilizowana za pomocą systemu kąpieli wodnej. Krótszy czas ładowania zbiornika został osiągnięty dla niższej temperatury.
EN
Along with the growing interest in hydrogen and due to its great demand in many branches of the economy, numerous scientific research is carried out on the methods and technologies of hydrogen production. The increased scale of H2 production makes it necessary to develop new solutions for safe and effective hydrogen storage. Due to the physical properties of hydrogen, the very process of its storage is troublesome, therefore it is most often stored in a liquefied form, compressed to high pressure. Relatively new hydrogen solutions are based on the use of metal hydrides and tanks with adsorbent coatings for this purpose. The article presents the results of laboratory tests for two adsorption tanks with a nominal capacity of 800 dm3 n. The research was conducted for two temperatures 20°C and 10°C. The temperature of the hydrogen reservoir was stabilized by a water bath system. Shorter tank loading time was achieved with the lower temperature.
PL
Wytwarzanie chłodu może wiązać się ze zwiększonymi kosztami energii elektrycznej z uwagi na niedopasowanie profilu zapotrzebowania na chłód z niższymi cenami energii w taryfie nocnej. Akumulatory chłodu o poprawnym doborze i dopasowaniu do profilu zapotrzebowania na chłód u danego odbiorcy mogą pozwolić na zmniejszenie rachunków dzięki redukcji zużycia energii elektrycznej w godzinach szczytowych. Magazyny energii oparte o ciepło jawne wiążą się zwykle z dużymi rozmiarami zbiorników i małą gęstością akumulowanej energii. Drogą do powszechnego wykorzystywania magazynów energii w systemach chłodniczych jest opracowanie taniego i efektywnego sposobu przechowywania chłodu, który zapewni wysoką gęstość akumulacji oraz wysoką efektywność wymiany ciepła. W niniejszym artykule przeanalizowano współpracę agregatu wody lodowej o wydajności chłodniczej 25 kW z trzema wariantami magazynu chłodu, bazującymi na różnych materiałach akumulujących. Określono wymagane minimalne pojemności zbiorników dla akumulacji w wodzie, lodzie oraz materiale zmiennofazowym. Przeprowadzono szacowanie oszczędności finansowych przy zastosowaniu trybu akumulacji pełnej, częściowej i z limitem wydajności dla reprezentatywnych profili popytu na chłód, które wskazuje na zwiększającą się zasadność wykorzystania systemu akumulacji w przypadku zwiększania się sumarycznego zużycia chłodu w godzinach szczytowych.
EN
Cold generation may be associated with increased electricity costs due to the mismatch between the cold demand profile and lower energy prices in the night tariff. Cold thermal energy storage (CTES) units may allow to reduce bills by reducing electricity consumption during peak hours while correctly selected and matched to the profile of cooling demand. Energy storage based on sensible heat is usually associated with large tank sizes and low energy density. The way to widespread thermal energy storage in refrigeration systems is to develop a cheap and effective method of cold storage, which will ensure high energy density and high heat exchange efficiency. The paper presents an analysis of the cooperation of a 25 kW cooling capacity chiller with three types of a cold storage units, based on various accumulating materials. The required minimum capacity of storage units for cold accumulation in water, ice and PCM (Phase Change Materials) was determined. For exemplary cooling demand profiles, the financial savings related to the use of full storage, partial storage and storage with limited cooling capacity were estimated. In the case of an increase in the total consumption of cold in peak hours, the application of thermal energy storage becomes more legitimate.
PL
W artykule zaprezentowano alternatywną metodę recyklingu częściowo wyeksploatowanych baterii trakcyjnych pochodzących z samochodów elektrycznych, polegającą na ich demontażu na pojedyncze ogniwa lub moduły, poddaniu procesowi testowania i wykorzystaniu do praktycznych realizacji magazynów energii dla potrzeb systemów zwłaszcza bazujących na odnawialnych źródłach energii. Omówiono wybrane szybkie metody testowania ogniw, opracowane stanowiska badawcze oraz wybrane komponenty niezbędne do realizacji projektu.
EN
he article presents an alternative method of recycling partially used traction batteries from electric cars, based on disassembling them into individual cells or modules. The modules were tested and used for the practical implementation of energy storage systems, especially based on renewable energy sources. Selected quick cell testing methods, developed test stands and selected components necessary for the project implementation were discussed. Selected procedures of the recycling process of partially used traction batteries from electric vehicles.
PL
W artykule przedstawiono ocenę celowości zastosowania magazynu energii w instalacji fotowoltaicznej o mocy 5 kWp, która pracuje w ramach programu Prosument, zgodnie z przepisami obowiązującymi od 2022 roku. Analiza została wykonana w oparciu o dane rzeczywiste uzyskane w czasie trzyletniej eksploatacji systemu fotowoltaicznego. Na podstawie zebranych danych określono ilość energii wyprodukowanej przez system fotowoltaiczny, wielkość nadwyżki, którą przesłano do sieci oraz ilość energii pobranej. Dane te pozwoliły na optymalny dobór pojemności zestawu akumulatorów, oszacowanie ilości energii, która może zostać zmagazynowana, kosztów inwestycyjnych oraz wartości rocznych korzyści związanych z zastosowaniem systemu. Następnie dokonano oceny efektywności ekonomicznej dla zaproponowanego układu magazynowania energii.
EN
his paper presents an assessment of the advisability of using energy storage in a 5 kWp photovoltaic system that operates under the Prosument program, according to the regulations in force since 2022. The analysis was performed based on actual data obtained during the threeyear operation of the photovoltaic system. Based on the collected data, the amount of energy produced by the photovoltaic system, the amount of surplus that was sent to the grid and the amount of energy consumed were determined. These data allowed for optimal selection of the capacity of the battery set, estimation of the amount of energy that can be stored, investment costs and the value of annual benefits associated with the use of the system. The economic efficiency for the proposed energy storage system was then evaluated.
first rewind previous Strona / 16 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.