A point of interest (POI) is a general term for objects that describe places from the real world. The concept of POI matching (i.e., determining whether two sets of attributes represent the same location) is not a trivial challenge due to the large variety of data sources. The representations of POIs may vary depending on the basis of how they are stored. A manual comparison of objects is not achievable in real time; therefore, there are multiple solutions for automatic merging. However, there is no yet the efficient solution solves the missing of the attributes. In this paper, we propose a multi-layered hybrid classifier that is composed of machine-learning and deep-learning techniques and supported by a first-past-the-post voting system. We examined different weights for the constituencies that were taken into consideration during a majority (or supermajority) decision. As a result, we achieved slightly higher accuracy than the best current model (random forest), which also is based on voting.
In the article publications have been analyzed and summarized on this topic: studied the experience of implementing building information models and geographic information models for administrative and economic management of transport infrastructure facilities on the example of the regional airport activity. After the stage of collecting geospatial data from various sources and sensors, the data is imported into CAD-systems or GIS-systems. Different software products are used to work with both of these models. The processes of data organization in the process of creating building information models and geographic information models differ to some extent. The issues of integration of such models are not yet fully addressed and need to be addressed. In the process of integration of spatial data, solutions to the integration of semantics, topology, formats and standards of geospatial data are needed. An important task is to develop and study the experience of creating software modules that allow you to integrate BIM-models into geographic information systems. Based on the research, it is established that the current area of research is the development of technologies that allow the generation of information from BIM and GIS to create a more interconnected infrastructure. The integration of BIM and GIS information to create a spatial data infrastructure (SDI) is a perspective direction.
The process of designing and implementing industrial models (or GIS) for underground utility infrastructure (UUI) includes a number of activities related to the analysis of source data to identify objects, pre processing the initial data, creating spatial database and development of relevant graphic (maps) and text (registers) products. Nowadays, every organization needs to be flexible and able to respond in a timely and adequate manner to the changes that occur in a complex and dynamic external environment. This is the reason why the paper proposes an approach for the design and development of a geoinformation system (GIS), through the capabilities of modern software for a part of the water supply and sewerage network for the needs of Water Supply and Sewerage Berkovitsa LTD. The purpose of the paper and GIS for maintaining data on UUI is to provide access to digital data for underground utility infrastructure and their characteristics, as well as to assist in the easy creation of references to underground utility infrastructure data in digital and graphic form.
Artykuł stanowi kontynuację prac autorów nad sposobem zapewnienia jakości i bezpieczeństwa danych oraz informacji lotniczych w całym procesie ich tworzenia, gromadzenia, przetwarzania i publikacji. W jego treści krótko scharakteryzowano dane geoprzestrzenne i podkreślono potrzebę ich regularnego pomiaru. Przedstawiono ogólną charakterystykę kart kontrolnych (Shewharta) i dokonano wyboru takiej karty dla mierzonych danych geoprzestrzennych, stosowanych w lotnictwie cywilnym. Następnie opracowano koncepcję wykorzystania wybranej karty kontrolnej Shewharta do diagnostyki niezgodności mierzonych danych geoprzestrzennych, załączając algorytm postępowania oraz przykład liczbowy. W podsumowaniu odniesiono się do uzyskanych wyników i zaproponowano dalsze kierunki prac badawczych, obejmujące w szczególności nawiązanie do wyznaczonych granic kontrolnych do wymagań i specyfikacji, zawartych w obowiązujących przepisach prawa lotniczego, z uwagą, że są one adekwatne do wymagań i specyfikacji oraz celu zastosowania w transporcie morskim.
EN
This article is a continuation of the Authors’ study on the ways to ensure the quality and safety of aeronautical data and information in the entire process of those data and information creation, collection, processing and publication. In its content a brief characteristic of geospatial data was placed and the necessity of their regular measurements was stressed. The general description of Shewhart control charts was presented and chart’s selection for the measured geospatial data used in civil aviation was made. Then the concept of selected Shewhart control chart’s utilization for diagnostics of measured geospatial data incompatibilities was developed, and operation algorithm as well as an example were attached. In the summary, references to the obtained results were made and further research directions were proposed, including, in particular, the reference of designated control limits to the requirements and specifications contained in the valid aeronautical law regulations, with a note that they are adequate to requirements and specifications as well as the purpose of use in maritime transport.
W artykule przedstawiono dyrektywę Unii Europejskiej – INSPIRE i jej implementację w naszym kraju. Przedstawiono główne produkty implementacji: Infrastrukturę Informacji Przestrzennej (IIP) oraz Georeferencyjną Bazę Danych Obiektów Topograficznych (GBDOT). Przedstawiono zakres informacyjny GBDOT opisując źródła danych ją zasilających. Na wybranych przykładach opisano jak GBDOT pokrywa zapotrzebowanie systemów informatycznych eksploatowanych w Siłach Zbrojnych RP na dane geoprzestrzenne. Opisano korzyści i zagrożenia dla obronności państwa, jakie powoduje wdrożenie dyrektywy INSPIRE w kraju.
EN
This paper presents the European Union directive – INSPIRE and its implementation in Poland. It includes description of the main products of implementation: Infrastructure for Spatial Infor mation (INSPIRE) and Georeference Database of Topographic Objects (GBDOT). It shows the scope of GBDOT, its data sources specification and selected examples that cover the needs for geospatial data in systems used in Polish Armed Forces. The paper also describes the benefits and risks for the national defence, which may result from implementation of the INSPIRE Directive in Poland.
Obecnie w Polsce trwają prace nad budową polskiej części europejskiej infrastruktury informacji geoprzestrzennej w ramach inicjatywy INSPIRE. Jednym z kluczowych i jednocześnie bardzo trudnym zadaniem jest utworzenie zbiorów danych spełniających wymagania dokumentów INSPIRE jako rezultat przekształcenia zbiorów krajowych w ich obecnej postaci. Problem ten dotyczy wszystkich dziedzinowych tematów wyszczególnionych w załącznikach Dyrektywy, w tym także danych hydrogeologicznych. Monografia ta przedstawia wyniki prac wykonanych w ramach projektu badawczego, którego celem było opracowanie technologii i metodyki transformacji krajowych danych hydrogeologicznych do formy i struktury określonej w specyfikacji INSPIRE dotyczącej tego tematu. Podstawą tej transformacji jest koncepcja technologiczna określana akronimem ETL: Extract – Transform – Load, co w skrócie sprowadza się do procesu złożonego z trzech faz: 1 – pobierz dane ze źródła i zapisz je w formie znacznikowej (XML), 2 – przekształć je do określonej nowej treści i formy (również XML) przy pomocy procesora XSLT (Extensible Stylesheet Language Transformations), 3 – umieść uzyskane wyniki w repozytorium lub bazie danych. Przyjęte tu rozwiązania technologiczne i metodyczne nie ograniczają się jedynie do danych hydrogeologicznych, które były głównym przedmiotem analiz i testów. Uzyskane wyniki mogą bez istotnych modyfikacji być zastosowane do geoinformacji z innych dziedzin, w tym szczególnie z zakresu dyscyplin związanych ze środowiskiem przyrodniczym. Przedstawiana w tej monografii problematyka składa się z szeregu aspektów i do najważniejszych z nich należą: Stan obecny krajowych danych hydrogeologicznych – ich zawartość, struktura, forma zapisu, sposób przechowywania i zasady udostępniania. Wymagania określone w dokumentach INSPIRE, w tym w aktach prawnych, specyfikacjach tematycznych i technicznych, a także przyjęte w infrastrukturze reguły organizacyjne. Przyjęte międzynarodowe normy i standardy dotyczące geoinformacji, interoperacyjności systemów geoinformatycznych ze szczególnym uwzględnieniem modeli danych, które mają bezpośrednie zastosowanie do danych hydrogeologicznych. Standardowe rozwiązania technologiczne dotyczące przetwarzania danych zapisanych w formie znacznikowej (XML), a w szczególności języków XPointer, XPath, XLink i XQuery, ponieważ są bezpośrednio związane z technologią XSLT. Metodyka i służące jej narzędzia przechowywania i pobierania danych w formie znacznikowej, a w tym bazy danych dedykowanie takiej formie zapisu. Specjalistyczne systemy narzędziowe przeznaczone do przekształcania danych geoprzestrzennych, zarówno komercyjne jak i typu Open Source. Oprogramowanie wspomagające procesy transformacji, jak na przykład edytory XML i przeglądarki danych geoprzestrzennych zapisanych w języku GML. Wykonane prace analityczne i testowe w rama tego projektu wykazały, że realizacja zadań z zakresu przedstawionej tu transformacji danych hydrogeologicznych jest w pełni wykonalna, jednak nie wszystkie szczegółowe operacje mogą na tym etapie być wykonane automatycznie bez interwencji manualnej. Z tego względu potrzebne są dalsze prace badawcze, które pozwolą w pełni zautomatyzować proces transformacji, a bezpośredni udział człowieka będzie sprowadzał się do wyznaczenia zadań przetwarzania wsadowego i do weryfikacji uzyskanych wyników.
EN
At present, teams of experts are carrying out works on development of the Polish part of the European geospatial information infrastructure under the INSPIRE initiative. One of the key and very difficult tasks is to create datasets that meet the requirements of INSPIRE documents as a result of transformation of national data sets from their present form. This problem applies to all domain-specific themes listed in the Annexes of the Directive, including hydrogeological data. This monograph presents the results of works performed within the framework of a research project which aim was to develop technology and methodology of the national hydrogeological data transformation to the form and structure specified in INSPIRE guideline documents related to this theme. The basis for this transformation is the technological concept referred to as the ETL: Extract – Transform – Load, which basically boils down to a process consisting of three phases: 1 – download the data from the source and save it in a tagged form (XML), 2 – convert it to a given new content and forms (including XML) using an XSLT processor (Extensible Stylesheet Language Transformations), 3 – put the results in a repository or a database. Assumed methodological and technological solutions are not limited to hydrogeological data, being the main subject of analysis and testing. The results can – without significant modifications– be applied to geospatial data from other fields, particularly in the scope of disciplines related with the natural environment. Problems presented in this monograph concern a number of aspects; the most important of them include: m The present state of national hydrogeological data – their content, structure, forms of encoding, the way of storage and the rules of sharing. m The requirements of the INSPIRE documents, including legal acts, thematic and technical specifications, as well as the adopted organizational rules in the infrastructure. m Accepted international standards for geoinformation, geospatial systems, their interoperability with particular emphasis on data models, which are directly applicable to the hydrogeology. m The standard technological solutions for data processing in the tagged encoding (XML), and particularly the use of XPointer, XPath, XLink, and XQuery languages because they are directly related to the XSLT technology. m The methodology and its tools for storing and retrieving data in the form of tagged encoding, and databases dedicated to this form of data storage. m Specialized tool systems, both commercial and Open Source, designed to transformation of geospatial data. m Software tools for supporting transformation processes, such as XML editors and GML data viewers. Analytical and test works performed in the frame of this project have shown that transformation of presented hydrogeological data is fully feasible, but not all the detailed operations can be automatically performed at this stage without manual intervention. Therefore, the need for further research exists, that would fully automate the process of transformation and direct human intervention would be required only to determine the tasks for batch processing and to check the results.
Obecnie parki narodowe gromadzą znaczne ilości danych przestrzennych. Dane te pozyskiwane są z powietrza, z ziemi oraz z wody. Występują one zarówno w postaci cyfrowej jak i analogowej, a do ich przetwarzania wykorzystywane są systemy o różnorodnych funkcjonalnościach i różnym stopniu złożoności. Budowa infrastruktury geoinformacyjnej parków odbywa się najczęściej z wykorzystaniem zobrazowań satelitarnych, lotniczych oraz danych z bezpośrednich pomiarów terenowych. Dane terenowe zbierane są na ogół przy użyciu odbiorników nawigacji satelitarnej (GNSS). Duże możliwości gromadzenia geodanych dają obecnie, wykorzystywane coraz częściej technologie Bezzałogowych Systemów Powietrznych (UAS) oraz skaningu laserowego. Analityczne opracowanie danych odbywa się na ogół przy zastosowaniu aplikacji typu GIS (Geographic Information System), która umożliwia analizy danych rastrowych, bazodanowych i wysokościowych. Dane te mają także swoje odniesienie przestrzenne, dzięki czemu możliwe jest np. określanie natężenia szlaków turystycznych czy stopnia wilgotności ściółki leśnej. W publikacji zaprezentowano możliwości wykorzystania systemu typu GIS na przykładzie Parku Narodowego Ujście Warty. W przedstawionym rozwiązaniu podstawą uzyskiwania informacji są dane atrybutowe zapisane w geobazie (w środowisku ArcGIS), dane obrazowe (obrazy lotnicze, satelitarne i z UAS) oraz Numeryczne Modele Wysokościowe. Dzię ki opisanej propozycji (Witzurki A., 2013) możliwe stało się utworzenie w pełni funkcjonalnego systemu, wykorzystującego szerokie spektrum danych przestrzennych. W publikacji przedstawiono również możliwości trójwymiarowego opracowania przestrzeni parków narodowych z wykorzystaniem danych z UAS i naziemnego skaningu laserowego.
EN
Currently national parks are collecting considerable quantities of spatial data. These data are gaining over from air, ground as well as water. The data exists in both digital and analog form, and to processed them various systems with different functionalities and the different degree of complexity are used. The building of geoinformation infrastructure of the Parks is going through satellite and aerial images as well as surveying data. Measurements data are collected mostly using Global Navigation Satellite Systems (GNSS) receivers. The wide possibilities in this field offer also, less used in national parks technologies, Unmanned Aerial Systems (UAS) as well as the LiDAR (Light Detection and Ranging). The analytic study of data is mainly basing on GIS (Geographical Information System) application, which makes possible the analysis of data base and elevation data. These data set has also spatial reference, which makes possible e. g. defining intensity of touristic routes of degree of moisture of forest bedding. In this paper the possibility of utilization of GIS system type on the example of Ujście Warty National Park were presented. The national park currently creates analytical solutions to provide the multi-access to spatial information. The basis for obtaining information are the attribute data stored in the geodatabase (in ArcGIS), image data (aerial and satellite images, UAS pictures and the numerical elevation models. Thanks to described proposal (Witzurki A., 2013) it was possible to create a fully functional system, using a wide range of spatial data. In the publication were also presented the possibility of a three-dimensional development of the national parks using data from the UAS and terrestrial laser scanning.
Satellite imagery provides a cost effective alternative to conventional field and aerial surveys for monitoring when, where and how much mining and reclamation efforts have been progressed [1]. Since the last five years, conventional remote sensing applications for natural resources exploration have been dominated by high-resolution Earth Orbiting systems such as IKONOS and QuickBird. High resolution imagery provides the detail necessary to indentify structures such conveyor belts, mining equipment, roads, dump sites etc. This enhanced imagery saved countless hours of field work in monitoring, verifying and planning almost all mining activities. A broad series of applications to enhance information available to mine managers uses various satellite data, from medium to high resolution. A recent demonstration of these applications reveals that a series of base maps can be formatted for direct input into mining company's existing GI system [2]. This combined information along with other data and reports, provide accurate up-to-date site specific information as often as every few days eliminating the need for manual information collection and digitization which can be exhausted and expensive work. The first information to be entered to a mine GI System is the base mapping that is helping identifying existing road network and adjacent exploration and dump sites. Land-cover and land-use information categorize the mining property into classes according to spectral and spatial characteristics of surface features (vegetation, bare soil, mixed areas etc.). This classification procedure will also help to identify reclaimed and unreclaimed land and restored dump site's vegetative growth vigour. The tonal variations based on spectral signatures, allows mining experts to extract plant health information on newly restored sites. This information can improve the regulatory environmental compliance and overall site integrity [3]. With just some points-and-clicks the disturbed landscape versus the undisturbed or restored can be calculated.
PL
Opłacalność jest bardzo ważnym pojęciem, który spółki węglowe uważają za kluczowy. Podstawowa zasada rekultywacji zniszczonego terenu to uczynienie tego minimalnymi kosztami. Dane geoprzestrzenne mogą odgrywać ważną i oszczędzającą koszty rolę w monitorowaniu aktualnej działalności górniczej oraz w tworzeniu map rekultywacji przy użyciu technik automatycznej klasyfikacji i porównania kilku zbiorów danych teledetekryjnych, przy minimalnej ilości pracy w terenie. Dane geoprzestrzenne mogą również wspomagać również inżynierów górniczych w wyborze, które obszary poddawać rekultywacji i do jakiego typu użytkowania. Oprócz tego procesu doradczego, wymagana jest prosta metodologia do symulacji głównych etapów podejmowania decyzji przez ekspertów górniczych (inżynier, kierownik) podczas tworzenia planu rekultywacji. Metodologia ta powinna gromadzić dane geoprzestrzennych i musi być bardzo prosta, zrozumiała i łatwa do uruchomienia przez specjalistę górniczego lub administratora z władz krajowych lub lokalnych, którzy sprawdzą poprawność środowiskową działalności górniczej i będą nadzorować zezwolenia na eksploatację zasobów naturalnych na danym terenie. Metoda musi umożliwić decydentom rozwiązywanie problemów, które wynikają z błędnie przyjętych celów w sposób matematyczny. W ten sposób zmniejszona zostanie tendencja do ignorowania lub niewłaściwej interpretacji wiele atrybutów, nawet tych najważniejszych, podczas tworzenia rankingu możliwości. Niniejsza praca pokazuje skuteczności kombinacji danych geoprzestrzennych i analizy wielokryterialnej do procesu podejmowania decyzji o rekultywacji terenów pogórniczych w sposób uzasadniony i wyważony.
This paper describes a research which attempts to combine the advantages of human analysts and computer automated processing for efficient human-computer symbiosis in geospatial data fusion. Specifically, the experiments performed were related to the analysis of the potential use of inhomogeneous (composed of different sources) stereo pairs for mapping dataset actualization. Inhomogeneous stereo pairs were combined with images of the map to be updated along with actual aerial images of the same territory. The anaglyphic product obtained after image processing of such stereo pairs was demonstrated to human analysts (subjects) and stereo perception of such stereo pairs was achieved. The most interesting finding of this experiment is the fact that some objects existing only on the aerial photo appeared in the inhomogeneous stereo pairs as 3D. This effect is caused by phenomena within the human eye-brain system known as human stereopsis, which is widely deployed in photogrammetry. For the quantitative measurements of the effect obtained an eye-tracking system was deployed. Analysis of human eye-movements (driven by conscious and subconscious brain processes), while perceiving an inhomogeneous stereo dataset, provides a unique opportunity for the human computer symbiosed geospatial systems. There are two potential outcomes of such approach: a) interpretative – analysts’ gaze-fixation zones can help to localize the areas where mapping dataset should be updated b) quantitative processing of eye fixations geometry during stereo model perception allows to transform the virtual 3D model to a geometrical one based on binocular summation measurements deploying eye-tracking.
PL
W artykule opisano badania, które mają na celu zintegrowanie możliwości ludzkiego umysłu oraz automatyzowanych procesów opracowania dużych zbiorów danych na komputerze do projektowania skutecznego systemu symbiozy człowieka z komputerem przy opracowaniu danych geoprzestrzennych. Eksperymenty w szczególności były związane z analizą możliwości wykorzystywania heterogenicznych (uzyskanych z różnych źródeł) stereogramów dla aktualizacji map i baz danych SIP. Heterogeniczne stereogramy stworzono z mapy rastrowej i aktualnych obrazów cyfrowych. Anaglif uzyskuje się po standardowemu opracowaniu obrazów i wykorzystuje się do stereoskopowego oglądania terenu (model 3D). Najbardziej interesującym fenomenem tego eksperymentu jest fakt, że niektóre obiekty, zarejestrowane tylko na aktualnym obrazie cyfrowym, pojawiły się na heterogenicznych stereogramach w postaci 3D. Ten efekt leży w granicach wzrokowo-mózgowego systemu, znanego jako widzenie stereoskopowe, który szeroko wykorzystuje się w fotogrametrii. Dla oceny parametrów uzyskanego stereomodelu wykorzystano eye-tracking system. Analiza ruchów ludzkiego oka, którymi rządzą świadome oraz podświadome procesy mózgowe, w procesie obserwacji obiektów na heterogenicznym stereogramie – jest źródłem unikalnej informacji dla systemów analizowania danych geoprzestrzennych, zbudowanych na symbiozie ludzkiego umysłu z komputerem.
Tradycyjne podejście do metodyki modelowania przepływu wody podziemnej ma niekorzystny wpływ na obecny rozwój tego działu hydrogeologii. Konsekwencją tego jest traktowanie danych wejściowych i wynikowych modeli jako „poprodukcyjne” pozostałości prac, których podstawowym celem jest papierowa mapa zawierająca wyniki lub tabelaryczne zestawienie arbitralnie wybranych wielkości liczbowych charakteryzujących warunki hydrogeologiczne. Szczegółowe i kompletne dane opracowane dla modelu lub uzyskane z symulacji są nieporównywalnie cenniejsze i koszty ich uzyskania są znaczne. Najczęściej jednak dane te przepadają bezpowrotnie. Z tego względu zastosowanie nowych technologii geoinformatycznych i teleinformatycznych do przechowywania i udostępniania tych danych jest sprawą bardzo ważną i wymagającą pilnych prac teoretycznych, eksperymentalnych i aplikacyjnych. Podstawę prawną dla wszelkich działań w tym zakresie stanowi dyrektywa INSPIRE, a podstawą w zakresie standardów są specyfikacje OGC i normy grupy ISO 19100.W tekście zawarte są przykłady koncepcji rozwiązań opartych na tych dokumentach.
EN
Traditional approach to the methodology of groundwater flow modelling has adverse impact on current development of this branch of hydrogeology. In consequence, input data and results of simulations are treated as “postproduction” remains of work, which fundamental aim is a paper map comprising results or tabular list of arbitrarily selected numerical quantities describing hydrogeological conditions. Detailed and complete data for a model or obtained from simulation are incomparably more valuable, and acquiring costs are considerable.However, most often we lose these data irretrievably. For this reason, application of new geospatial data technologies and data communication technologies for storage and making these data available is currently a very important issue and needs urgent theoretical, experimental and implicational works. The INSPIRE Directive is a legislative base for all activities in this scope, together with OGC specifications and ISO 19100 group of standards. There are examples of conceptual solutions based on these documents in the text.