Ograniczanie wyników
Czasopisma
Autorzy
Lata
Preferencje
Język
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
Strona / 1
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  random dropping of customers
Sortuj według:

Ogranicz wyniki do:
Strona / 1
1
EN
This article proposes a method of study the M/Es/2/m and M/Es/2/∞ queueing systems with a hysteretic strategy of random dropping of customers. Recurrence relations are obtained to compute the stationary distribution of the number of customers and steadystate characteristics. The constructed algorithms were tested on examples with the use of simulation models constructed with the help of GPSS World.
EN
We propose a method for determining the probabilistic characteristics of the M/G/1/m queueing system with the random dropping of arrivals and distribution of the service time depending on the queue length. Two sets of service modes, with the service time distribution functions Fn (x) and Fn (x) respectively, are used according to the twothreshold hysteretic strategy. The Laplace transforms for the distribution of the number of customers in the system during the busy period and for the distribution function of the length of the busy period are found. The developed algorithm for calculating the stationary characteristics of the system is tested with the help of a simulation model constructed with the assistance of GPSS World tools.
EN
We propose a method of study the M/E2/3/∞ queueing systems: standard system and systems with the threshold and hysteretic strategies of the random dropping of customers in order to control the input flow. Recurrence relations to compute the stationary distribution of the number of customers and the steady-state characteristics are obtained. The developed algorithms are tested on examples using simulation models constructed with the assistance of the GPSS World tools.
EN
We study the Mθ/G/1/m and Mθ/G/1 queuing systems with the function of the random dropping of customers used to ensure the required characteristics of the system. Each arriving packet of customers can be rejected with a probability defined depending on the queue length at the service beginning of each customer. The Laplace transform for the distribution of the number of customers in the system on the busy period is found, the mean duration of the busy period is determined, and formulas for the stationary distribution of the number of customers in the system are derived via the approach based on the idea of Korolyuk’s potential method. The obtained results are verified with the help of a simulation model constructed with the assistance of GPSS World tools.
Strona / 1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.