The energy transfer process of selective laser melting (SLM) is highly complex. In this work, experiments were carried out to study the effects of SLM on the microstructure and mechanical properties of 18Ni300 martensitic steel. With the increase in laser power, the grain size of the cladding layer decreases and the microstructure becomes dense. The side hardness is higher than upper surface hardness, and the tensile strength and elongation both increase first and then decrease. When the laser power is 300 W and the scanning speed is 1,000 mm/s, the comprehensive mechanical properties are the best, as the tensile strength, microhardness, elongation at break, and elongation after fracture are 1,217 MPa, 37.5%, 37.6%, and 8.93%, respectively. EBSD (Electron Backscatter Diffraction) shows that columnar crystals grow along the growth direction (z direction) in XOZ and YOZ planes, and the grains show weak texture. There are many small-angle grain boundaries, and the grain sizes are <10 μm.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Jedną z technik druku 3D, dzięki której można wytworzyć metodą przyrostową niemalże lite elementy metalowe, jest metoda laserowego przetapiania proszków SLM (ang. selective laser melting). Jest to nowoczesna technologia pozwalająca na tworzenie elementów, które znajdują zastosowanie w obszarach począwszy od przemysłu motoryzacyjnego i lotniczego, a skończywszy na przemyśle stomatologicznym czy medycznym [1-3].
EN
One of the 3D printing technologies thanks to which almost solid metal elements can be produced using the additive method is SLM (selective laser melting). This is a modern technology that enables creating elements which are used in areas ranging from the automotive and aviation industry to the dental or medical industry [1-3].
Selective laser melting is one of the additive manufacturing technologies that is used to produce complex-shaped components for applications in the automotive industry. The purpose of the changes in the design, technology, and material tests was to make a steering gear housing using the SLM method. The steering gear housing was produced by the pressure casting method using an AlSi9Cu3(Fe) alloy. The construction of this housing is adapted to the specifics of left-hand traffic. The change in technology was related to the change of the position of the steering system from right-hand to left-hand and the demand for a limited number of gear housings. It was necessary to make a virtual model of the housing on the basis of the part that was removed from the vehicle. In SLM technology, the AlSi10Mg aluminum alloy was used as a raw material in the form of CL 32Al gas-atomized powder. After the SLM process was completed, the housings were subjected to heat treatment. The AlSi10Mg alloy fabricated by the SLM method after heat treatment is characterized by good plasticity and an average value of tensile strength. The last stage was to check the geometry of the SLM housing with a 3D scanner. As a result, a map of the dimensional deviations from the nominal values was obtained. This data was used to modify the CAD model before the next fabrication process. The use of 3D printing technology allowed for the quick production of elements. The time to develop the technology and the production of the first two gear housings based on a 3D model was seven days.
4
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Selective laser melted Titanium grade 23 was characterized by low porosity, relatively large surface roughness and pronounced surface texture (i.e. surface grooves orientation). The band/layer microstructure was built of mixed α and β phases. The as printed structure exhibited very high compressive residual stresses with strong anisotropy (i.e., − 512 ± 17 MPa and − 282 ± 14 MPa along the laser scanning direction and along the transverse direction, respectively) and strong fiber crystallographic texture. The latter one is responsible for the anisotropy of hardness in the material. Annealing at 600 °C during four hours significantly removed residual stresses (i.e. to − 14 ± 2.8 MPa) and slightly weakened the texture. Yield strength, 1120 ± 50 MPa, and ultimate tensile strength, 1210 ± 50 MPa, of the annealed material are significantly higher and tensile elongation, 3.9%, lower than for commercial Titanium grade 23. Final mechanical polishing to obtain flat and relatively smooth surface induced desired compression residual stress in the subsurface (i.e., equal to about − 90 MPa). Low absorbed gas contents (oxygen, nitrogen, hydrogen) and low porosity of the printed material indicates the correctness of the technology and allows the printed material to be classified as meeting the requirements of ASTM standards for Titanium grade 23. Besides traditional testing techniques, the optical profilometry, X-ray analysis (texture and residual stresses measurement) and infrared absorption method were applied for the product characterization and some potential of these testing methods and usefulness in technological practice was discussed, what can be particularly interesting both to practitioners from industry and researches from scientific laboratories.
5
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
This study investigated the impact of the equal channel angular pressing (ECAP) combined with heat treatments on the microstructure and mechanical properties of AlSi10Mg alloys fabricated via selective laser melting (SLM) and gravity casting. Special attention was directed towards determining the effect of post-fabrication heat treatments on the microstructural evolution of AlSi10Mg alloy fabricated using two different routes. Three initial alloy conditions were considered prior to ECAP deformation: (1) as-cast in solution treated (T4) condition, (2) SLM in T4 condition, (3) SLM subjected to low-temperature annealing. Light microscopy, transmission electron microscopy, X-ray diffraction line broadening analysis, and electron backscattered diffraction analysis were used to characterize the microstructures before and after ECAP. The results indicated that SLM followed by low-temperature annealing led to superior mechanical properties, relative to the two other conditions. Microscopic analyses revealed that the partial-cellular structure contributed to strong work hardening. This behavior enhanced the material’s strength because of the enhanced accumulation of geometrically necessary dislocations during ECAP deformation.
The paper presents the scopes of examination of the cancellous bone, 3D CAD design of scaffolds of the cancellous bone and their creation with a laser beam in SLM incremental technology. The geometrical size of the scaffold and the material feature corresponding to the Young's modulus are the parameters describing the porous structure of the cancellous bone. In the statistical analysis, these values are defined as independent variables. The physical properties of the scaffold are defined by the strength parameters determined by hardness (e.g. HIT, HM, HV and are dependent variables). The REGMULT multiple regression program was used to develop the research results. However, to optimize the porous structure of the scaffold, the single-criteria optimization program SYEQL3 was used.
PL
W pracy przedstawiono zakresy badania kości gąbczastej, projektowania 3D CAD rusztowań (skaffoldów) kości gąbczastej oraz ich tworzenia wiązką lasera w technologii przyrostowej SLM. Parametrami opisującymi porowatą strukturą kości gąbczastej są: wielkości geometryczne rusztowania oraz cecha materiałowa odpowiadająca modułowi Younga. Wielkości te w analizie statystycznej definiowane są jako zmienne niezależne Własności fizykalne rusztowania zdefiniowane przez parametry wytrzymałościowe (twardości, np. HIT, HM, HV) są zmiennymi zależnymi. Do opracowania wyników badań zastosowano program regresji wielokrotnej o nazwie REGMULT. Do optymalizacji struktury porowatej skaffoldu, wykorzystano program optymalizacji jednokryterialnej SYEQL3.
This paper is focused on the investigations of the residual stresses present in SLM Cu-4.3%Sn alloys, which were fabricated by the SLM process. The source Cu-4.3%Sn powder was analyzed for basic characteristics, and then the residual stress state was determined for 3D printed samples with different geometries before and after heat treatments. Stress measurements were performed using the X-ray diffraction ꞷ-sin2ψ method. Nonhomogeneous residual stresses were found to be present within SLM Cu-4.3%Sn alloys samples. Biaxial tensile stress was revealed in the interior of as-printed cube samples and it was reduced by annealing, whereas thin strip samples contained biaxial compressive stresses and after annealing the stress became more equi-biaxial but it was not reduced to zero near the sample surface. The results suggest how residual stresses are distributed within the copper SLM alloys with a simple shape. More complex geometries are expected to have correspondingly more complicated stress states. The performed investigation provides insight in to the residual stress distribution in copper alloys fabricated via SLM, which have not been widely studied yet. Application of the ꞷ-sin2ψ technique to the SLM process was analyzed and it was found that the methodology of utilizing the ꞷ-sin2ψ can be widely applied using standard X-ray diffraction facilities to study residual stresses within the additively manufactured metal alloy parts.
PL
Celem pracy było ustalenie stanu naprężeń własnych w stopach Cu-4,3%Sn wytwarzanych metodą selektywnego stapiania laserowego (SLM). Wyniki pomiaru naprężeń zostały skorelowane z uprzednio zmierzonymi właściwościami mechanicznymi i mikrostrukturą. W ramach pracy oceniono, czy zastosowany proszek ze stopu Cu-4,3%Sn spełnia oczekiwania stawiane materiałom na wyroby uzyskiwane techniką SLM oraz sprawdzono, czy metoda dyfrakcyjna ꞷ-sin2ψ jest odpowiednią metodą do pomiarów naprężeń szczątkowych w wyrobach ze stopu miedzi wykonanych metodą SLM.
Microstructure and wear property of AlSi10Mg alloy manufactured by selective laser melting (SLM) were investigated. Also, the effect of post heat treatment on the mechanical and wear properties was examined. Two kinds of heat treatments (direct aging (DA) and T6) were separately conducted to SLM AlSi10Mg alloy. As-built alloy had a cellular structure formed inside the moltenpool. Eutectic Si was also observed at the cellular boundary in as-built alloy. After DA heat treatment, the cellular structure still remained, and a large amount of nano-size Si particles were newly formed inside the cell structure. Both molten pool and cellular structure disappeared, and the size of Si increased in T6 alloy. The values of Vickers hardness measured as 139.4 HV (DA alloy), 128.0 HV (As-built alloy) and 85.1 HV (T6 alloy), respectively. However, concerning to wear property, T6 alloy showed better wear resistance than other alloys. The correlation between microstructure and wear mechanism of SLM AlSi10Mg alloy was also discussed.
10
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In this research work, four groups of selective laser melted specimens were built from AlSi10Mg-0403 powder. Each group represents the direction with respect to the bed in which the specimens are built (X, Y, Z and 45° orientation). The mechanical properties of the specimens are characterized in terms of yield strength, ultimate tensile strength, Young’s modulus and elongation at break. In addition to that, the acoustic emission (AE) during the testing was monitored using wide-band high-accuracy piezoelectric sensors. The AE results were related to the mechanical characteristics of the specimens in terms of the acoustic parameter-based data, the peak amplitude, cumulative energy and count rate. The mechanical results show that the specimens built along the z direction have relatively lower strength and it can be attributed to the borderline porosity formed during the SLM process. The acoustic results can identify the critical points of failure under loading. The AE technique proves to be a powerful tool in characterizing the mechanical property and can unveil the concealed information which cannot be identified directly from the mechanical results.
11
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Additive manufacturing has recently expanded its potential with the development of selective laser melting (SLM) of metallic powders. This study investigates the relation between the mechanical properties and the microstructure of Ti6Al4V alloy produced by SLM followed by a hot isostatic pressing (HIP) treatment. HIP treatment minimizes the detrimental influence of material defects. Tensile specimens produced with reference to specific building axes were prepared using a Renishaw A250 system. It has been found that the tensile strength and elongation depend on specimen building direction. Microstructural and textural characterizations were carried out to identify the source of differences.
The paper presents an investigation of results on an additive manufactured drill base body. Due to the technological and strength limitations, conventional drills with inner coolant ducts may not be smaller than 13 mm diameter. The novel idea was to keep the strength of small diameter drills making spiral coolant ducts. Drills were fabricated using a 3D laser printer to obtain the designed geometry in a way not affecting its stiffness and strength. The tensile strength of samples was between Rm = 1287 and 1603 MPa, and microhardness of drills was between 606 and 627 HV5. The sintered material revealed a very small porosity rate (below 1%) and very few discontinuities. Thus, it was demonstrated that the 3D laser printing enabled the production of advantageous drill base bodies.
PL
W artykule przedstawiono wyniki badań korpusu wiertła wykonanego za pomocą technologii addytywnej. Ze względu na ograniczenia technologiczne i wytrzymałościowe tradycyjne wiertła z wewnętrznymi kanałami nie mogą mieć średnic mniejszych niż 13 mm. Zaprojektowano nowatorskie wiertła o mniejszych średnicach ze spiralnymi kanałami wewnętrznymi, które w mniejszym stopniu obniżają wytrzymałość korpusu. Wykonano je za pomocą laserowej drukarki 3D, gdyż uzyskanie takiego kształtu technologią tradycyjną jest bardzo utrudnione. Wytrzymałość próbek uzyskano w granicach od Rm = 1287 do 1603 MPa, a mikrotwardość pomiędzy 606 a 627 HV5. Uzyskany materiał wykazywał bardzo małą porowatość poniżej 1% i bardzo niewiele nieciągłości struktury. W ten sposób wykazano, że laserowy druk 3D daje możliwość wykonania korpusów wierteł o wysokiej wytrzymałości.
This study presents a panorama of the AlSi7Mg0.6 (A357) aluminum alloy in additive manufacturing by selective laser melting. The document is mainly interested in the metallurgical tempers obtained after manufacture and after heat treatment; it quickly cover the process. The results concerning the material integrity (porosity), mechanical properties, microstructures, residual stresses, etc., are presented in order to best define the technological capacities of these metallurgical tempers: as-built, soft annealed, T6, and artificial aging. Some information on the mechanisms and kinetics of precipitation is also presented using the Johnson–Mehl–Avrami–Kolmogorov model. Finally, the conclusion proposes an inventory (advantages/disadvantages) of the metallurgical tempers obtained to better understand the industrial applications.
The densification behavior of H13 tool steel powder by dual speed laser scanning strategy have been characterized for selective laser melting process, one of powder bed fusion based metal 3d printing. Under limited given laser power, the laser re-melting increases the relative density and hardness of H13 tool steel with closing pores. The single melt-pool analysis shows that the pores are located on top area of melt pool when the scanning speed is over 400 mm/s while the low scanning speed of 200 mm/s generates pores beneath the melt pool in the form of keyhole mode with the high energy input from the laser. With the second laser scanning, the pores on top area of melt pools are efficiently closed with proper dual combination of scan speed. However pores located beneath the melt pools could not be removed by second laser scanning. When each layer of 3d printing are re-melted, the relative density and hardness are improved for most dual combination of scanning. Among the scan speed combination, the 600 mm/s by 400 mm/s leads to the highest relative density, 99.94% with hardness of 53.5 HRC. This densification characterization with H13 tool steel laser re-melting can be efficiently applied for tool steel component manufacturing via metal 3d printing.
W artykule przedstawiono wyniki badań eksperymentalnych i numerycznych tytanowych rusztowań do hodowli komórkowych. W badaniach strukturalnych z wykorzystaniem mikroskopii skaningowej analizowano wpływ technologii przyrostowej i parametrów procesu technologicznego na kształt i wielkość projektowanych porów. Zaprojektowane konstrukcje o różnej wielkości i kształcie porów zweryfikowano pod kątem wytrzymałości przez symulacje numeryczne metodą elementów skończonych (MES).
EN
The article presents the results of experimental and numerical studies of titanium scaffolds for cell cultures. In structural studies using scanning microscopy, the influence of incremental technology and technological process parameters on the shape and the size of the designed pores was analyzed. The designed constructions of various sizes and pore shapes were verified for strength using numerical simulations by the finite element method (FEM).
17
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Purpose: The purpose of the article is to present the design and fabrication methodology of metallic scaffolds, with the shape and dimensions defined by the designer, coated with a thin layer of polymer. Design/methodology/approach: The methodology proposed covers Computer Aided Materials Design (CAMD), fabrication of metallic scaffolds using a machine for Selective Laser Melting (SLM), the deposition of a thin layer of polymers onto scaffolds using coldwork and hot-work polymerisers, as well as mechanical finishing. The strength of the newly developed metal-polymer composites to three-point bending was examined and their fractures were viewed with SEM. Findings: A fabrication method of implants in the form of scaffolds coated with a thin layer of polymer with the dimensions and shape closely matching the losses in a patient’s hard and/or soft palate. Practical implications: After clinical tests, a metal-polymer implant may be a very beneficial alternative for patients with palate losses using traditional prostheses until now. Originality/value: The individualised implants of palate pieces in the form of scaffolds coated with a thin layer of polymer, submitted for patent protection, do not have their counterparts, which is representing their originality.
18
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Purpose: of the present paper is to offer treatment protocol with fixed partial dentures, produced by selective laser melting, including clinical and laboratory parts. Design/methodology/approach: The treatment protocols with selective laser melted fixed partial dentures was developed on the basis of literature survey and our previous research about accuracy and mechanical properties of dental bridges, manufactured by additive technologies. Findings: The treatment protocol with fixed partial dentures, produced by selective laser melting, consisting of clinical and laboratory parts, was developed. The treatment procedures with FPD made by SLM were classified as semi-digital when working with extraoral scanner and fully-digital - with intraoral scanner. Research limitations/implications: The introduction of the proposed treatment protocol into the clinical and laboratory practice would lead to a systematic approach and working optimization for prosthodontists and dental technicians when using selective laser melting. Practical implications: Due to the elimination of multiple manual manipulations and technological operations, treatment protocols with FPD, produced by SLM, ensure higher accuracy and quality of the constructions and shorter time for their manufacturing compared to the conventional procedure. Originality/value: The developed clinical and laboratory protocols for the treatment and manufacturing of FPD through SLM clearly show the benefits of the new technology in dentistry and dental technician field.
19
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Achieving good mechanical properties as well as the dimensional accuracy and the smooth surface quality of selective laser melting printed parts with minimal post treatments are essential in additive manufacturing. In the present study, Inconel 718 samples with different powder layer thickness (20, 30, 40 and 50 μm) were additively fabricated using 3D Systems ProX-300 machine. The results reveal that the lower the layer thickness, the denser and good dimensional accuracy were achieved. Marginally higher mechanical properties and microhardness were also obtained at the lower thickness while the failure strain was still high. This can be explained through significant change in the microstructure due to different cooling rate and thermal cycles. In addition, the formation of ɤ′ and ɤ″ intermetallic phases, which were well distributed in the matrix and grain boundaries, during heating/cooling, gave rise in the strengths. Fractography shows the plastic deformation band due to work hardening and the crack initiation sites at sub-micro/micro pores, lack of fusion areas and the boundary of unmelted particles. The study would guide engineers balance their options between the production rate and the building parts’ quality.
20
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In the present study, selective laser melting (SLM) was used to successfully fabricate Inconel 718–tungsten carbide (WC) composites. The processing parameter optimization results reveal that nearly non-porous composites (99.54%) were achieved with the laser power of 220 W, scanning speed of 850 mm s−1, and the hatch spacing of 150 μm. The microstructural characterization unveils that elongated grain structure in the heat flow direction was observed in the case of pure IN718 while WC particles served as obstacles to hinder the grain growth in the composites. The formation of in situ intermediate layer and the strong interfacial bonding between WC super-hard particles and the matrix acted as load bearing and significantly contribute to the overall properties of composites. Mechanical tests indicate significant improvements of microhardness and tensile strengths, although a drop in strength was observed when the amount of WC reached 15 wt.%. In addition, the thermal experiment shows that the composites are dimensionally stable at higher temperature compared to their monolithic counterpart. The findings suggest that the developed IN718-WC composites can be utilized in many critical engineering applications in nuclear sector.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.