Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 13

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  maintenance optimization
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
A convenient urban transportation network facilitates a high-quality life and a high-growth economy. Due to cascading failures being a ticklish question triggering continuous road congestion, the maintenance plan is momentous to restore the urban transportation network. Considering fault edges are removed and cars slowly drive out of these edges to ease traffic congestion, a traffic distribution model is proposed to analyze the cascading failures process. To resume the transportation network, this paper proposes a maintenance optimization with minimizing maintenance time. It recovers the cascading failures from two perspectives: the intra-area maintenance model and the inter-area maintenance model. At last, a transportation network of a city in China is regarded as a case study to illuminate the feasibility of the proposed models. The results show that on the premise of dividing traffic areas, it is reasonable to adopt the intra-area maintenance plan for cascading failures. Compared with the previous travel data, the inter-area maintenance plan saves more time.
EN
Nowadays, the main challenge in maintenance is to establish a dynamic maintenance strategy to significantly track and improve the performance measures of multi-state systems in terms of production, quality, security and even the environment. This paper presents a quantitative approach based on Dynamic Bayesian Network (DBN) to model and evaluate the maintenance of multi-state system and their functional dependencies. According to transition relationships between the system states modeled by the Markov process, a DBN model is established. The objective is to evaluate the reliability and the availability of the system with taking into account the impact of maintenance strategies (perfect repair and imperfect repair). Using the proposed approach, the dynamic probabilities of system states can be determined and the subsystems contributing to system failure can also be identified. A practical application is demonstrated by a case study of a blower system. Through the result of the diagnostic inference, to improve the performances of the blower, the critical components C, F, W, and P should be given more attention. The results indicate also that the perfect repair strategy can improve significantly the performances of the blower, while the imperfect repair strategy cannot degrade the performances in comparison to the perfect repair strategy. These results show the effectiveness of this approach in the context of a predictive evaluation process and in providing the opportunity to evaluate the impact of the choices made on the future measurement of systems performances. Finally, through diagnostic analysis, intervention management and maintenance planning are managed efficiently and optimally.
EN
The degradation process of wind turbines is greatly affected by external factors. Wind turbine maintenance costs are high. The regular maintenance of wind turbines can easily lead to over and insufficient maintenance. To solve the above problems, a stochastic degradation model (SDE, stochastic differential equation) is proposed to simulate the change of the state of the wind turbine. First, the average degradation trend is obtained by analyzing the properties of the stochastic degradation model. Then the average degradation model is used to describe the predictive degradation model. Then analyze the change trend between the actual degradation state and the predicted state of the wind turbine. Secondly, according to the update process theory, the effect of maintenance on the state of wind turbines is comprehensively analyzed to obtain the availability. Then based on the average degradation process, the optimal maintenance period of the wind turbine is obtained. The optimal maintenance time of wind turbines is obtained by optimizing the maintenance cycle through availability constraints. Finally, an onshore wind turbine is used as an example to verification. Based on the historical fault data of wind turbines, the optimized maintenance decision is obtained by analyzing the reliability and maintenance cost of wind turbines under periodic and non-equal cycle conditions. The research results show that maintenance based on this model can effectively improve the performance of wind turbines and reduce maintenance costs.
PL
Najlepsi operatorzy traktują swoje maszyny bardzo osobiście. Łączy je z nimi uczucie podobne do tego, jakim filmowy kowboj darzy swojego konia. Widać to choćby na zdjęciach, które operatorzy publikują na portalu stowarzyszenia OPERATOR. Jednak z każdą maszyną trzeba się kiedyś rozstać.
PL
System zarządzania nawierzchniami na terenie portów lotniczych wdrożony na lotnisku im. F. Chopina w Warszawie to koncepcja łącząca ewidencję nawierzchni, optymalizację utrzymania, zasady badań stanu technicznego, katalog zabiegów naprawczych, zarządzanie sytuacjami niebezpiecznymi, itd. Realizacja funkcji systemu jest wspomagana programem komputerowym APEX, pozwalającym na prognozowanie zmian ewolucji stanu technicznego, opracowywanie optymalnego plan robót, badanie skutków różnych strategii utrzymania oraz prowadzenie elektronicznego archiwum dokumentów. System zawiera rozbudowany i elastyczny moduł raportowania umożliwiający przegląd wyników w postaci map, tabel lub wykresów.
EN
Pavement management system implemented at F. Chopin Airport in Warsaw is a conception connecting pavement inventory, maintenance optimization, principles of measurements, catalogue of treatments, management of dangerous phenomena etc. Above mentioned functionality is supported by computer program APEX, that allows forecasting of future condition, preparation of optimized work programme, testing of different maintenance strategies as well as keeping of an electronic archive. System has vast and flexible reporting modulus enabling review of results as maps, tables or graphs.
PL
Niezawodność turbiny wiatrowej ma ogromne znaczenie dla gotowości i efektywności ekonomicznej instalacji wiatrowej. W niniejszym artykule zbudowano, w oparciu o sieci Bayesa (BN), model niezawodności turbiny wiatrowej uwzględniający wpływ prędkości wiatru. Przedstawiono Metodę Logiki Przyczynowości (Causal Logic Method, CLM), służącą do modelowania jakościowego, która łączy zalety drzewa błędów w odniesieniu do aspektów technicznych z atutami BN w odniesieniu do czynników środowiskowych i niepewności. Do kalkulacji ilościowych zaproponowano nową metodę dopasowania opartą na oczekiwaniach, w której dane z eksploatacji i opinie ekspertów łącznie pozwalają opisać niepewność rozkładów prawdopodobieństwa a priori. Wskaźnik niezawodności turbiny wiatrowej i jej elementów otrzymano posługując się algorytmem wnioskowania przybliżonego w połączeniu z dynamiczną dyskretyzacją zmiennych ciągłych. Dla zilustrowania proponowanej metody przedstawiono studium przypadku, którego wyniki wskazują, że prędkość wiatru jest ważnym czynnikiem niezawodności turbiny wiatrowej.
EN
The reliability of wind turbine is of great importance for the availability and economical efficiency of wind power system. In this article, a reliability model for wind turbine is built with Bayesian network (BN), in which the influence of wind speed is considered. Causal logic method (CLM) is presented for qualitative modeling, which combines the merits of fault tree in handling technical aspects and the strength of BN in dealing with environmental factors and uncertainty. A novel adjustment method based on expectation is proposed for quantitative calculation, by which historical data and expert judgment are integrated to describe the uncertainty in the prior probability distributions. An approximate inference algorithm combining with dynamic discretization of continuous variables is adopted to obtain the reliability index of wind turbine and its elements. A case study is given to illustrate the proposed method, and the results indicate that wind speed is an important factor for the reliability of wind turbine.
PL
Celem pracy jest ocena trwałości technicznej układu. W ocenie statystycznej technicznej trwałości resztkowej, wykorzystywane są duże ilości danych tribo-diagnostycznych. Dane te służą jako początkowe źródło informacji. Dostarczają informacji nt. cząsteczek zawartych w oleju, które świadczą o jego bieżącym stanie, jak również o stanie całego układu. Szczególny nacisk położono na cząsteczki, które uznano za godne uwagi i wartościowe. Tego rodzaju informacje mają duży potencjał techniczny i analityczny, który nie został jeszcze wystarczająco zbadany. Modelując występowanie cząsteczek w oleju, spodziewamy się określić najlepszy czas na przeprowadzenie konserwacji zapobiegawczej. Sposób modelowania i dalszej oceny oparto o konkretne charakterystyki analizy regresji, logiki rozmytej i procesów dyfuzyjnych-tj.proces Wienera. Śledząc wyniki modelowania możliwe będzie ustalenie reguł utrzymania urządzeń zależnie od ich bieżącego stanu technicznego (condition-based maintenance, CBM). Możliwości są jednak dużo większe, pozwalając także na planowanie eksploatacji rutynowej i zadań. Wszystkie powyższe kroki prowadzą do oszczędności.
EN
The aim of the paper is to estimate a system technical life. When estimating a residual technical life statistically, a big amount of tribo-diagnostic data is used. This data serves as the initial source of information. It includes the information about particles contained in oil which testify to oil condition as well as system condition. We focus on the particles which we consider to be interesting and valuable. This kind of information has good technical and analytical potential which has not been explored well yet. By modelling the occurrence of particles in oil we expect to find out when a more appropriate moment for performing preventive maintenance might come. The way of modelling and further estimation is based on the specific characteristics of a regression analysis, fuzzy logic and diffusion processes – namely the Wiener process. Following the modelling results we could, in fact, set the principles of “CBM – Condition Based Maintenance”. However, the possibilities are much wider, since we can also plan in service operation and mission. All these steps result in inevitable cost saving which we would like to contribute to.
EN
Constantly increasing maintenance costs impose optimal maintenance policy planning. One possible way which helps to minimize maintenance costs and prevent bus fleet availability is analysis of historical maintenance records, which contain information about failures and performed repairs. In many cases this data have free text form and their analysis require individual log-by-log examination of their content. In order to automate this process, text mining methods can be applied. But, accuracy of the analysis depends on data quality and employed methods and should be tested before using this approach. This is especially important when the service decisions, which influence safety and maintenance costs, are made on this basis. The aim of this paper is to determine whether existing and currently used text-mining methods are sufficiently accurate to be used in classification of unstructured urban bus maintenance and repair data. For that purpose the case study and literature review has been conducted. The study shows great capabilities of proposed classification model. The model has 99% of accuracy and can be applied to support maintenance decisions.
PL
Stale rosnące koszty utrzymania taboru autobusowego wymuszają potrzebę kształtowania odpowiedniej polityki serwisowej. Niezbędna w tym zakresie jest analiza danych historycznych, które zawierają informację o zaistniałych awariach i wykonanych naprawach. W wielu przypadkach dane te posiadają formę tekstową, co wymaga ich indywidualnej oceny rekord po rekordzie. W celu zautomatyzowania tego procesu istnieje możliwość zastosowania metod klasy text mining. Aby jednak wyniki analizy text mining mogły zostać wdrożone muszą wykazywać się one odpowiednią dokładnością. Jest to szczególnie istotne w przypadku, gdy na podstawie tych wyników podejmowane są decyzje serwisowe wpływające na bezpieczeństwo i koszty eksploatacyjne. Celem niniejszego artykułu jest weryfikacja, czy powszechnie stosowane metody text mining są wystarczająco dokładne, aby analizować historyczne dane serwisowe autobusów. W tym celu dokonano przeglądu literaturowego oraz analizy text mining tego konkretnego typu danych. Przeprowadzone badania wykazały, że dokładność klasyfikatora wynosi 99%. Na tej podstawie można stwierdzić, że są to metody wystarczająco dokładne, aby za ich pośrednictwem podejmować decyzję serwisowe.
EN
This paper presents an algorithm to solve the problem of maintenance management of a two state parallel-series system based on preventive maintenance over the different system components. It is assumed that all components of the system exhibit Weibull hazard function and constant repair rate and that preventive maintenance would bring the system to the as good as new condition. The algorithm calculates the interval of time between preventive maintenance tasks for each component, minimizing the costs, and in such a way that the total downtime, in a certain period of time, does not exceed a predetermined value. It is presented an industrial case study where the algorithm is applied.
EN
This paper develops a joint copula reliability model for systems subjected to dependent competing risks caused by two degradation processes and random shocks. The two degradation processes follow gamma processes and the random shocks follow a non-homogeneous Poisson process (NHPP). Their interdependence relationship is modeled by a copula function, which is determined by a two-stage method based on simulated data. It is shown that the proposed model can provide more precise results than the model without considering the dependent relationship. Through the proposed reliability model, two maintenance models are studied and compared. It is found that the inspection cost has significant effects on the choosing of maintenance policy.
PL
W niniejszej pracy opracowano wspólny model niezawodności z użyciem kopuły dla systemów poddawanych zależnym zagrożeniom konkurującym powodowanym przez dwa procesy degradacji i zaburzenia losowe. Owe dwa procesy degradacji reprezentują typ procesu gamma, podczas gdy zaburzenia losowe są typem niejednorodnego procesu Poissona (non-homogeneous Poisson process - NHPP). Ich związek wzajemnej zależności modelowany jest przy użyciu funkcji kopuły, która jest wyznaczana na podstawie dwuetapowej metody opartej o dane symulowane. Wykazano, iż proponowany model może zapewnić bardziej precyzyjne wyniki niż model, w którym nie ujęto związku zależności. W oparciu o proponowany model niezawodności, badane i porównywane są dwa modele eksploatacji. Stwierdzono, iż koszt przeglądu ma duży wpływ na wybór polityki eksploatacyjnej.
EN
The paper is to apply regression analysis methods with confidence intervals in order to analyse field data with the aim of finding the dependence of Fe particles occurrence on operating time. When comparing the results of the method/approach the authors believe that they can estimate the real operating profile of observed technical systems as well as its operating history. The results might be used for optimizing during an operation and maintenance phase.
PL
W artykule wykorzystano metodę analizy regresji w określonych przedziałach ufności do badania systemów uzbrojenia eksploatowanych w warunkach polowych. Metoda ta posłużyła do przeanalizowania zależności występowania cząsteczek żelaza od czasu eksploatacji badanych systemów. Analiza porównawcza otrzymanych rezultatów wskazuje, że wykorzystana metoda daje możliwość oszacowania realnego trybu i czasu pracy badanych systemów. Otrzymane wyniki mogą być wykorzystanie do optymalizacji faz użytkowania i utrzymania rozpatrywanych systemów uzbrojenia.
EN
Engine system is a prone-fault part in diesel locomotive and its malfunctions always occur regularly in different seasons in practice. However, the current maintenance policy in China has not attached deserving importance to seasonal influence, which is considered as one of the main causes for over/under-maintenance. To assess the current maintenance, in this study a double-fold Weibull competing risk model for summer and winter is developed using the real failure data (2008-2011) of locomotives from Urumqi Railway Bureau. Meanwhile, a new approach, termed as Approximately Combined Parameter Method (ACPM), is proposed to combine the initially estimated parameters into different folds, which can avoid a subjective determination of the model's parameters fold. After that, the combined parameters are used as initial values for maximum likelihood estimate (MLE) to achieve an accurate model. Necessary optimizations are introduced based on the chosen models. Results show that the maintenance period differs a lot between winter and summer, and the optimized maintenance can increase the availability and decrease cost more than the existing Policy.
PL
Układ silnikowy stanowi podatną na uszkodzenia część lokomotywy spalinowej, a w praktyce jego awarie występują zawsze regularnie w zależności od pory roku. Pomimo tego, obecna polityka obsługowa w Chinach nie przywiązuje wystarczającej wagi do wpływu pór roku, co uważa się za główną przyczynę nadmiernych lub niedostatecznych działań obsługowych. Aby ocenić bieżące działania obsługowe, w niniejszym artykule opracowano model zagrożeń konkurujących dla lata i zimy, oparty na połączeniu dwóch rozkładów Weibulla, wykorzystujący rzeczywiste dane o uszkodzeniach (2009-2011) lokomotyw używanych przez Agencję Kolejową Urumqui. Jednocześnie zaproponowano nowe podejście, o nazwie Approximately Combined Parameter Method (Metoda Przybliżonego Łączenia Parametrów, ACPM), które polega na łączeniu wstępnie obliczonych parametrów w różne wielokrotności, co pozwala na uniknięcie subiektywnego wyznaczania liczby parametrów modelu. W celu otrzymania dokładnego modelu, połączone parametry wykorzystuje się jako wstępne wartości w estymacji metodą największej wiarygodności. Konieczne optymalizacje wprowadza się na podstawie wybranych modeli. Wyniki pokazują, że letni okres obsługowy różni się zasadniczo od zimowego, a zoptymalizowana obsługa może zwiększyć gotowość systemu i zmniejszyć koszty utrzymania ruchu w większym stopniu niż dotychczasowa polityka obsługowa.
EN
Purpose: This paper deals with the optimization of the condition based maintenance (CBM) applied on manufacturing multi-equipment system under cost and benefit criteria. Design/methodology/approach: The system is modeled using Discrete Event Simulation (DES) and optimized by means of the application of a Multi-Objective Evolutionary Algorithm (MOEA). Findings: Solution for the joint optimization of the condition based maintenance model applied on several equipment has been obtained. Research limitations/implications: The developed approach has been successfully applied to the optimization of condition based maintenance activities of a hubcap production system composed by three plastic injection machines and a painting station, for management decision support. Originality/value: This paper provides a solution for the joint optimization of CBM strategies applied on several equipments.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.