The main goal of the paper is dedicated to proper arrangement of the Finite Element (FE) and Random Cellular Automata (RCA) methods in order to develop numerical model of dynamic recrystallization (DRX) and therefore to simulate microstructure morphology changes during plastic deformation at elevated temperatures. In the approach, Finite Element solver provides information on equivalent stress and strain fields after subsequent time steps. Then these data are transferred to RCA model, which is responsible for evaluation of corresponding microstructure morphology evolution and dislocation density changes. Finally, information from the CA part is send back to the FE solver as an input for the next time step. As a result, a fully coupled RCAFE model to simulate progress of DRX is established. The present paper is directly focused on development of algorithms and methods to transfer input/output data between both FE and RCA models. The developed communication protocol is based on the Abaqus VUMAT subroutine. Examples of obtained results from the developed model are also presented to highlight its potential.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.