Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 56

Liczba wyników na stronie
first rewind previous Strona / 3 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  OEL
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 3 next fast forward last
PL
Ftalan dibutylu (DBP) jest stosowany jako dodatek zmiękczający do żywic i polimerów, a także jako środek żelujący, rozpuszczalnik, środek przeciwpieniący, przy wytwarzaniu farb nitrocelulozowych, włókien szklanych, kosmetyków, osłonek leków, insektycydów oraz jako środek smarny. W dostępnym piśmiennictwie dostępne są jedynie informacje dotyczące narażenia zawodowego na mieszaninę par i aerozoli plastyfikatorów ftalanowych. U narażonych na ftalany przy produkcji mężczyzn stwierdzono polineuropatie. Ftalan dibutylu jest zaklasyfikowany jako substancja działająca szkodliwie na rozrodczość kategorii zagrożenia 1B. Wartość LOAEL dla działania na rozrodczość manifestującego się istotnym i zależnym od dawki zwiększeniem częstości występowania morfologicznie nieprawidłowych plemników u szczurów wynosi 31 mg/kg mc./dzień. Z kolei u myszy obserwowano zmniejszenie masy jąder, opóźnienie spermatogenezy oraz zaburzenia dojrzewania komórek Sertolego w wyniku narażenia na ftalan dibutylu w dawce ≥1 mg/kg mc./dzień. Za skutek krytyczny działania ftalanu dibutylu przyjęto działanie drażniące na drogi oddechowe oraz działanie na rozrodczość. Jako podstawę wyliczenia wartości NDS przyjęto wyniki 4-tygodniowego doświadczenia na szczurach. Za wartość NOAEC dla miejscowego działania drażniącego na drogi oddechowe przyjęto stężenie 1,18 mg/m³ . Na podstawie przeprowadzonych obliczeń zaproponowano przyjąć stężenie 0,6 mg/m³ jako wartość NDS dla par i aerozoli ftalanu dibutylu. Nie ustalono wartości chwilowej, NDSCh.
EN
Dibutyl phthalate (DBP) is used as a softening additive for resins and polymers, and as a solvent, defoamer, in the production of nitrocellulose paints, glass fibers, cosmetics, drug casings, insecticides. The available literature provides information on occupational exposure to a mixture of vapors and aerosols of phthalate plasticizers only. Polyneuropathy was found in men exposed to phthalates during production. Dibutyl phthalate is classified as toxic for reproduction category 1B. The LOAEL for reproductive effects, as manifested by a significant and dose-dependent increase in the incidence of morphologically abnormal sperm in rats, is 31 mg/kg bw/day. In turn, in mice, decreased testicular weight, delayed spermatogenesis and impaired maturation of Sertoli cells were observed as a result of exposure to dibutyl phthalate at a dose of ≥ 1 mg/kg bw/day. Irritation to the respiratory tract and effect on reproduction were considered to be a critical effect of dibutyl phthalate. The results of a 4-week experiment on rats were used as the basis for the calculation of the MAC value. The concentration of 1.18 mg/m³ was adopted as the NOAEC. It was proposed to assume the concentration of 0.6 mg/m³ as the MAC value. Short term exposure value has not been established.
PL
Masa reakcyjna 5-chloro-2-metylo-2H-izotiazol-3-onu i 2-metylo-2H-izotiazol-3-onu (3: 1), zwana dalej CIT/MIT, jest jasnożółtym krystalicznym ciałem stałym, bardzo dobrze rozpuszczalnym w wodzie. Jest stosowana jako środek biobójczy w płynach technologicznych oraz jako konserwant w różnorodnych produktach konsumenckich. Skutki przewlekłego narażenia ludzi były badane prawie wyłącznie pod kątem potencjału działania uczulającego na skórę. Skutki przewlekłego narażenia zwierząt wynikały przede wszystkim z działania drażniącego. Skutkiem krytycznym CIT/MIT jest działanie drażniące na błony śluzowe nosa. Podstawą do obliczenia proponowanej wartości NDS były wyniki 13-tygodniowego eksperymentu inhalacyjnego na szczurach, w którym wyznaczono wartość NOAEC na poziomie 0,34 mg/m³ . Do obliczenia wartości NDS przyjęto współczynnik niepewności A = 2 ze względu na różnice wrażliwości osobniczej u ludzi, pozostałe współczynniki przyjęto równe 1. Zaproponowano przyjęcie wartości NDS równej 0,2 mg/m³ . Ze względu na działanie drażniące proponuje się przyjęcie wartości chwilowej NDSCh wynoszącej 0,4 mg/m³ . Dostępne dane są niewystarczające do ustalenia wartości dopuszczalnego stężenia w materiale biologicznym DSB. Zaproponowano oznakowanie CIT/MIT: A – substancja uczulająca; C – substancja żrąca; Skóra – wchłanianie substancji przez skórę może być tak samo istotne jak przy narażeniu drogą oddechową. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
EN
Reaction mass of 5-chloro-2-methyl-2H-isothiazol-3-one and 2-methyl-2H-isothiazol-3-one (3:1) (CIT/MIT) is a light yellow crystalline solid, very soluble in water. It is used as a biocide in process fluids and as a preservative in a variety of consumer products. The effects of chronic human exposure have been investigated almost exclusively for skin sensitization potential. The effects of chronic animals exposure were mainly due to the irritating effect of the substance. The critical effect of CIT/MIT is irritation of the nasal mucosa. The basis for calculating the MAC value were the results of the 13-week inhalation experiment on rats, in which the NOAEC value of 0.34 mg/m³ was determined. To calculate the MAC value, the uncertainty factor A = 2 was adopted due to differences in individual sensitivity in humans. The MAC value of 0.2 mg/m³ and STEL value of 0.4 mg/m³ have been proposed. There is no basis for setting BEI value. The following notations have been proposed: A – sensitizing substance; C – corrosive substance and Skin – skin absorption of the substance may be just as important as for inhalation exposure. This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
PL
Związki chromu(VI) są ciałami stałymi o budowie krystalicznej, o zróżnicowanej rozpuszczalności w wodzie. Związki Cr(VI) są stosowane w obróbce powierzchni metalowych w celu zabezpieczenia przed korozją lub w celach dekoracyjnych (chromowanie, anodowanie), jako dodatek do stali nierdzewnej chromowej, w syntezie chemicznej jako silny środek utleniający i jako katalizator, do produkcji niektórych pigmentów, inhibitorów korozji, środków do ochrony drewna. Powstają również podczas spawania i cięcia plazmowego. Pracownicy mogą być narażeni na związki Cr(VI) w środowisku pracy drogą inhalacyjną, pokarmową i przez skórę. Na terenach uprzemysłowionych możliwe jest narażenie pozazawodowe, np. przez wodę do picia, kontakt z glebą lub innymi mediami zanieczyszczonymi tymi związkami. W Polsce w latach 2005-2018 na podstawie informacji przesłanych do Centralnego Rejestru Danych o Narażeniu na Substancje, Preparaty, Czynniki lub Procesy Technologiczne o Działaniu Rakotwórczym lub Mutagennym prowadzonego przez IMP w Łodzi w środowisku zawodowym najbardziej rozpowszechniony był dichromian(VI) potasu (zgłaszało go ponad 500 zakładów pracy, a liczba narażonych osób przekraczała 5 tys.). Ponad 1 tys. narażonych osób zgłaszano również w przypadku tlenku chromu(VI), chromianu(VI) potasu oraz innych związków chromu(VI). Zdecydowaną większość zgłoszonych do rejestru stanowisk pracy, na których występowały związki Cr(VI), stanowiły stanowiska laboratoryjne (75%), ponad 10% stanowiska pracy związane z galwanizacją lub trawieniem powierzchni, a około 4% stanowiska spawaczy. W 2018 r. rozporządzeniem MRPiPS wprowadzono dla wszystkich związków Cr(VI) wartość NDS wynoszącą 0,01 mg/m³. W 2019 r. zgodnie z danymi GIS na stężenia >0,1 NDS ÷ 0,5 NDS było narażonych 640 pracowników, >0,5 NDS ÷ NDS – 146 pracowników, a powyżej wartości NDS – 48 pracowników. Przewlekłe narażenie zawodowe na związki Cr(VI) może powodować skutki związane ze żrącym i drażniącym działaniem tych substancji (zmiany skórne, objawy ze strony dróg oddechowych, zaburzenia funkcji nerek) oraz wystąpienie raka płuca i zatok przynosowych. Okres latencji wystąpienia raka płuca u pracowników narażonych zawodowo na związki Cr(VI) wynosi około 20 lat. U ludzi dowody działania związków Cr(VI) na rozrodczość są niejednoznaczne, chociaż są badania wskazujące na ryzyko zmniejszenia jakości nasienia, które odnotowano w grupie spawaczy. Przy ustalaniu wartości NDS za skutek krytyczny działania związków Cr(VI) przyjęto działanie rakotwórcze na płuca. Dla związków Cr(VI) przyjęto wartość NDS na poziomie 0,005 mg Cr(VI)/m³ bez ustalenia wartości chwilowej NDSCh. Zaproponowana wartość NDS 0,005 mg Cr(VI)/m³ zabezpieczy pracowników również przed działaniem drażniącym związków Cr(VI) obecnych w powietrzu środowiska pracy. Przyjęto następujące oznakowanie związków Cr(VI): Carc.*, Muta.*, Ft (Repr.)*, C(r-r)*, I* oraz A*, których kategorię należy ustalić zgodnie z tabelą 3. załącznika VI do rozporządzenia Parlamentu Europejskiego i Rady WE nr 1272/2008 z dnia 16 grudnia 2008 r. (Dz. Urz. WE L 353, 1-1355 z późn. zm.).
EN
Chromium (VI) compounds are solids with a crystalline structure of varying solubility in water. Chromium (VI) compounds are used in the treatment of metal surfaces to protect against corrosion or for decorative purposes (chrome plating, anodizing), as an additive to chrome stainless steel, in chemical synthesis as a strong oxidizing agent and as a catalyst, for the production of certain pigments, inhibitors corrosion, wood preservatives. They are also formed during welding and plasma cutting. Workers can be exposed to Cr(VI) compounds in the working environment by inhalation, oral and dermal route. In industrialized areas, non-occupational exposure, e.g., through drinking water, contact with soil or other media contaminated with these compounds is possible. In Poland, in 2005-2018, based on information sent to the Central Registry conducted by the Nofer Institute of Occupational Medicine in Łódź, the most common was potassium dichromate (VI) (it was reported by over 500 workplaces, and the number of exposed people exceeded 5,000). Over one thousand exposed persons have been reported for chromium (VI) oxide, potassium chromate (VI) and other chromium (VI) compounds. The vast majority of workplaces with chromium (VI) compounds reported to the register were laboratory stands (75%), over 10% of workplaces related to electroplating or surface etching, and about 4% were welders. In 2018, the regulation of ministry introduced a TLV (MAC) value of 0.01 mg/mᶾ for all chromium(VI) compounds. In 2019, according to Sanitary Inspection data, 640 workers were exposed to concentrations > 0.1 MAC ÷ 0.5 MAC, > 0.5 MAC ÷ MAC – 146 workers, and above the MAC value – 48 workers. Chronic occupational exposure to chromium (VI) compounds may cause effects related to the corrosive and irritating action of these substances (skin lesions, respiratory symptoms, renal dysfunction) and the occurrence of lung cancer and paranasal sinuses. The latency period for lung cancer in workers who are occupationally exposed to Cr(VI) compounds is approximately 20 years. In humans, evidence of the effects of chromium (VI) compounds on reproduction is inconclusive, although there are studies showing a risk of reduced semen quality, which has been reported in the group of welders. Lung carcinogenicity was assumed as a critical effect of Cr(VI) compounds when establishing the MAC value. For chromium (VI) compounds, the MAC value was assumed at the level of 0.005 mg Cr(VI)/m³ without establishing the short-term (STEL, NDSCh) value. The proposed MACV value of 0.005 mg Cr(VI)/m³ will also protect employees against the irritating effects of chromium(VI) compounds present in workplace air. The following labeling of chromium (VI) compounds has been adopted: Carc.*, Muta.*, Ft (Repr.)*, C (rr)*, I* and A*, the category of which should be determined in accordance with table 3 of Annex VI to the Regulation of the European Parliament and EC Council No. 1272/2008 of December 16, 2008 (OJEU L 353, 1-1355 as amended).
PL
Drewno jest surowcem przemysłu drzewnego. Narażenie na pyły drzew liściastych (drewno twarde) lub w mieszaninie z gatunkami iglastymi (drewno miękkie) jest skorelowane z wystąpieniem gruczolakoraka nosa. Astma zawodowa jest najczęściej wynikiem działania biologicznie aktywnych związków chemicznych obecnych w drewnie drzew liściastych i iglastych. Pyły drewna twardego i miękkiego mogą upośledzać drożność dróg oddechowych, wywołując przewlekłe choroby płuc. Biorąc pod uwagę skutki zdrowotne oraz uwzględniając przedstawione przez Komisję Europejską uwarunkowania socjoekonomiczne przedsiębiorstw, zmniejszono dotychczasową wartość NDS z 3 mg/m³ do 2 mg/m³ dla frakcji wdychalnej pyłów drewna z przypisem, że wartość NDS dotyczy wszystkich rodzajów pyłów drewna. Proponowana wartość jest na poziomie proponowanej przez Komisję Europejską wartości wiążącej dla frakcji wdychalnej pyłów drewna twardego i będzie obowiązywać w Polsce i w innych państwach Unii Europejskiej od 18 stycznia 2023 r. Do 17 stycznia 2023 r., w okresie przejściowym, dla pyłów drewna twardego obowiązuje wartość wiążąca 3 mg/m³ . Komisja UE zaliczyła prace związane z narażeniem na pyły drewna twardego i mieszanego do procesów technologicznych klasyfikowanych jako rakotwórcze dla ludzi (wg dyrektywy 2017/2398/WE). Ze względu na fakt, że pyły drewna wykazują działanie: rakotwórcze, mutagenne i pylicotwórcze, ustalenie wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh) jest nieuzasadnione. Pyły drewna oznakowano jako substancję rakotwórczą zgodnie z załącznikiem nr 1 rozporządzenia Ministra Zdrowia oraz – ze względu na możliwe działanie uczulające – literą „A”. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
EN
Wood is a raw material of the wood industry. Exposure to dust from deciduous trees (hardwood) or from a mixture with coniferous species (softwood) is correlated with nasopharyngeal adenocarcinomas. Occupational asthma is the result of actions of the biologically active compounds present in some wood species (both hardwood and softwood). Hardwood and softwood dusts may impair clear airway, resulting in chronic lung disease. Taking into account the health effects and the socio-economic conditions of enterprises presented by the European Commission, we propose to lower the current TLV value from 3 mg/m³ to 2 mg/m³ for the inhalable fraction of wood dust, with the note that the TLV value applies to all types of wood dust. The proposed value corresponds to the binding value proposed by the European Commission (BOELV) for the inhalable fraction of hardwood dusts set at 2 mg/m³, taking into account the socio-economic conditions of enterprises. This value will apply in Poland and EU countries from January 18, 2023. The Commission of the European Union included research on exposure to hard and mixed wood dust to technological processes classified as carcinogenic to humans (Directive 2017/2398/EC) and indicating that if there is a mixture of hardwood dust with other wood dust then MAC refers to the total wood dust present in the mixture. Due to the fact that wood dusts are carcinogenic, mutagenic and cause pneumoconiosis, the determination of STEL values is unjustified. Wood dust was labeled as a carcinogen with Annex 1 to the Regulation of Ministry of Health, and with letter “A” because of possible sensitization. This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
PL
Furan jest stosowany w syntezie organicznej, przy produkcji lakierów, leków, stabilizatorów, zamienników detergentów, środków chemicznych stosowanych w rolnictwie, laminatów odpornych na temperaturę, jako rozpuszczalnik żywic i odczynnik w laboratoriach. Furan jest zaklasyfikowany do substancji rakotwórczych kategorii zagrożenia 1B. W latach 2005-2017 wzrastała liczba zakładów pracy zgłaszających furan do Centralnego Rejestru Danych o Narażeniu na Substancje, Czynniki i Procesy Technologiczne o Działaniu Rakotwórczym lub Mutagennym w Środowisku Pracy. W 2017 r. 9 zakładów zgłosiło 183 narażonych pracowników. Dotychczas w Polsce nie ustalono wartości NDS dla furanu. W warunkach narażenia zawodowego furan wchłania się do organizmu drogą inhalacyjną i dermalną. Jako skutek krytyczny narażenia na furan przyjęto działanie hepatotoksyczne. Wartość NDS na poziomie 0,05 mg/m³ powinna zabezpieczyć pracowników również przed działaniem rakotwórczym. Dodatkowe ryzyko białaczki u osób zatrudnionych przez 40 lat na furan o stężeniu 0,05 mg/m³ jest poniżej 10-3 i nie przekracza wartości ryzyka akceptowalnego w środowisku pracy. Ze względu na działanie drażniące furanu ustalono wartość chwilową NDSCh na poziomie 0,1 mg/m³ . Substancja powinna być oznakowana: „Carc. 1B” (substancja rakotwórcza kategorii zagrożenia 1B), „I” (substancja o działaniu drażniącym) oraz „skóra” (wchłanianie substancji przez skórę może być tak samo istotne, jak przy narażeniu drogą oddechową). Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
EN
Furan is used in the organic synthesis, in the production of varnishes, drugs, stabilizers, detergent substitutes, chemicals used in agriculture, temperature-resistant laminates, as a solvent for resins and in laboratories. Furan is classified as a carcinogen category 1B. In 2005-2017, the number of enterprises reporting furan to the Central register of occupational carcinogens or mutagens increased. In 2017, 9 enterprises reported 183 exposed people. So far, the MAC value for furan has not been established in Poland. Under occupational exposure conditions, furan is absorbed into the body by inhalation and dermal route. The hepatotoxic effect was assumed as a critical effect of exposure to furan. The OEL value at the level of 0.05 mg/m³ should also protect employees against carcinogenic effects. The additional risk of leukaemia in people exposed to furan at a concentration of 0.05 mg/m³ for 40 years is less than 10-3 and does not exceed the acceptable risk value in the working environment. The STEL value was proposed at the level of 0.1 mg/m³ . The substance should be labeled: “Carc. 1B ”(carcinogenicity category 1B), “I” (irritant) and “Skin” (skin absorption can be as important as inhalation). This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
PL
Doksorubicyna (CAS: 23214-92-8) i jej chlorowodorek (CAS: 25136-40-9) to organiczne substancje chemiczne rozpuszczalne w wodzie. Doksorubicyna to lek cytostatyczny z grupy antybiotyków antracyklinowych, stosowany w antymitotycznej chemioterapii antynowotworowej, przede wszystkim drogą dożylną, dopęcherzowo, a także, w przypadku raka płuca, w postaci aerozolu do inhalacji. W Polsce, według informacji z Centralnego Rejestru Danych o Narażeniu na Substancje Chemiczne, ich Mieszaniny, Czynniki lub Procesy Technologiczne o Działaniu Rakotwórczym lub Mutagennym, prowadzonego w Instytucie Medycyny Pracy w Łodzi, liczba osób narażonych łącznie na doksorubicynę i jej chlorowodorek w 2016 r. wynosiła 587 Podawanie doksorubicyny lub jej chlorowodorku pacjentom w dawkach leczniczych może prowadzić do: mielosupresji, kardiomiopatii i zwłóknienia mięśnia sercowego oraz neurotoksyczności. Najmniejsza dawka terapeutyczna po podaniu doksorubicyny wziewnie w postaci aerozolu w badaniach klinicznych pacjentom z chorobą nowotworową wynosi 0,04 mg/kg mc. Skutki niepożądane podania doksorubicyny obejmowały: kaszel, duszność, ból w klatce piersiowej, świszczący oddech, chrypkę, krwioplucie oraz skurcz oskrzeli. Toksyczność ogólnonarządowa była określona jako łagodna i przejściowa i obejmowała: ból gardła, anoreksję, zaburzenia smaku, zmęczenie, nudności, ból języka i tachykardię. Producenci doksorubicyny w kartach charakterystyki podają, że narażenie inhalacyjne na pył lub aerozol jest niebezpieczne dla zdrowia, może powodować: dyskomfort, nudności, wymioty, supresję szpiku kostnego, zapalenie jamy ustnej, utratę włosów i kardiotoksyczność. W badaniach rakotwórczości przeprowadzonych na zwierzętach wykazano, że doksorubicyna była rakotwórcza dla szczurów po podaniu dożylnym i podskórnym, powodując głównie guzy gruczołu sutkowego. Stwierdzono działanie genotoksyczne doksorubicyny na komórki somatyczne i zarodkowe myszy. Zaobserwowano aberracje chromosomowe w komórkach szpiku kostnego. Doksorubicyna działa szkodliwie na rozrodczość. Może działać szkodliwie na płodność i na dziecko w łonie matki. W Polsce oraz w innych państwach dotychczas nie zostały ustalone wartości najwyższych dopuszczalnych stężeń doksorubicyny i jej chlorowodorku w środowisku pracy. Dopuszczalne poziomy narażenia zawodowego rekomendują jej producenci: FormuMax Scientific, Inc. oraz Pfizer, na poziomie 0,0005 mg/m³ . Zaproponowano przyjąć wartość NDS doksorubicyny i jej chlorowodorku na poziomie stężenia ekwiwalentnego do 0,1% najmniejszej znalezionej w piśmiennictwie wziewnej dawki terapeutycznej u ludzi Dw = 0,04 mg/kg mc., tj. na poziomie 0,0003 mg/m³ – frakcja wdychalna. Nie ma podstaw merytorycznych do ustalenia wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh). Zalecono oznakowanie substancji notacją „skóra” – wchłanianie substancji przez skórę może być tak samo istotne, jak przy narażeniu drogą oddechową. Należy również zastosować oznakowanie literami „Ft” – substancja o działaniu szkodliwym na rozrodczość, Carc. 1B – substancja rakotwórcza kategorii zagrożenia 1B oraz Muta. 1B – substancja mutagenna na komórki rozrodcze kategorii zagrożenia 1B. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
EN
Doxorubicin (CAS: 23214-92-8) and its hydrochloride (CAS: 25136 40 9) are organic chemicals soluble in water. It is a cytostatic drug from the group of anthracycline antibiotics, used in antimitotic antitumor chemotherapy, primarily by intravenous, intravesical, and also in the case of lung cancer in the form of an aerosol for inhalation. In Poland, according to data from the Central Data Register on Exposure to Chemicals, Mixtures Thereof, Factors or Technological Processes with Carcinogenic or Mutagenic Effect, conducted at the Institute of Occupational Medicine in Łódź, the number of people exposed to doxorubicin and its hydrochloride in 2016 totaled 587. Administration of doxorubicin or its hydrochloride to patients at therapeutic doses may lead to myelosuppression, cardiomyopathy and myocardial fibrosis as well as neurotoxicity. Adverse effects of doxorubicin administration included cough, shortness of breath, chest pain, wheezing, hoarseness, hemoptysis, and bronchospasm. Systemic toxicity was defined as mild and transient and included sore throat, anorexia, dysgeusia, fatigue, nausea, tongue pain, tachycardia. Doxorubicin manufacturers state in their safety data sheets that inhalation of dust or aerosol is hazardous to health, may cause discomfort and nuisance, nausea, vomiting, bone marrow suppression, stomatitis, hair loss, and cardiotoxicity. Animal carcinogenicity studies have shown that doxorubicin was carcinogenic to rats after intravenous and subcutaneous administration, mainly causing mammary gland tumors. Doxorubicin has been shown to have genotoxic effects on somatic and embryonic mouse cells. Doxorubicin is toxic for reproduction. It may damage fertility and the unborn child. In Poland and in other countries, the highest permissible concentrations of doxorubicin and its hydrochloride in the work environment have not yet been determined. Occupational exposure limits are recommended by its manufacturers: FormuMax Scientific, Inc. and Pfizer at 0.0005 mg/m³ . It was proposed to set up the MAC value for doxorubicin and its hydrochloride at the equivalent concentration level up to 0.1% of the lowest inhalational therapeutic dose found in the literature Dw = 0.04 mg/kg, i.e., 0.0003 mg/m³ – inhalable fraction. There are no substantive grounds to determine the STEL value. It is recommended to label the substance with the notation “skin” – the absorption of the substance through the skin may be just as important as when inhaled. The letters “Ft” should also be used – toxic for reproduction, Carc. 1B – carcinogen category 1B and Muta. 1B – germ cell mutagen category 1B. This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
PL
Akrylonitryl jest wysoce łatwopalną, lotną, bezbarwną lub bladożółtą, przezroczystą cieczą o nieprzyjemnym zapachu. Związek jest bardzo reaktywny chemicznie, niestabilizowany ulega spontanicznej polimeryzacji. Jest głównie stosowany jako surowiec do produkcji włókien i tworzyw sztucznych.Akrylonitryl działa toksycznie (w warunkach narażenia przewlekłego działa szkodliwie na układ nerwowy), drażniąco i uczulająco. Jest zaklasyfikowany do kategorii zagrożenia 1B czynników rakotwórczów (na podstawie wyników badań na zwierzętach; w dostępnym piśmiennictwie i bazach danych brak informacji na temat wyników badań epidemiologicznych). Propozycję wartości najwyższego dopuszczalnego stężenia (NDS) akrylonitrylu wyznaczono na ilościowym szacowaniu ryzyka nowotworów OUN u szczurów, narażanych inhalacyjnie. Zaproponowano przyjęcie wartości NDS akrylonitrylu w powietrzu środowiska pracy na poziomie 1 mg/m³ , przy której dodatkowe ryzyko nowotworu OUN (przy założeniu 40-letniego okresu aktywności zawodowej) wynosi 2,2 10-4 ÷ 6,2 10-4. Aby ograniczyć możliwość wystąpienia stężeń pikowych zaproponowano przyjęcie wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh) akrylonitrylu na poziomie 3 NDS, tj. 3 mg/m³ . Jako wartość DSB zaproponowano 60 μg/l (2-cyjanoetylo)- waliny (CEV) we krwi pobranej po 3 miesiącach narażenia. Ze względu na działanie rakotwórcze, drażniące, uczulające oraz wchłanianie akrylonitrylu przez skórę substancję oznakowano literami: „Carc. 1B” – substancja rakotwórcza kategorii zagriożenia 1B, „A” – substancja uczulająca, „I” – substancja drażniąca oraz „skóra” – wchłanianie substancji przez skórę może być tak samo istotne, jak przy narażeniu drogą oddechową. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
EN
Acrylonitrile is a highly flammable, volatile, colorless or pale yellow transparent liquid with a pungent odor. It is chemically very reactive and undergoes spontaneous polymerization. It is mainly used in the production of artificial fibers and plastics. Acrylonitrile is toxic (harmful to nervous system during chronic exposure), irritating and sensitizing. It is classified as a carcinogen category 1B based on animal studies (no evidence from epidemiological studies). The proposed TLV value for acrylonitrile was based on a quantitative risk assessment of CNS tumors in rats exposed by inhalation. The MAC value of 1 mg/m³ has been proposed, at which the additional risk of CNS cancer, assuming a 40-year period of occupation, is 2.2 10-4 – 6.2 10-4. To prevent peak concentrations, the STEL value of 3 mg/m³ has been proposed. The BLV value was proposed at 60 µg/l (2-cyanoethyl)valine (CEV) in blood collected after 3 months of exposure. Due to its carcinogenic, irritating, sensitizing effects and absorption of acrylonitrile through the skin, it should be labeled: Carc. 1B (carcinogenicity category 1B); A (sensitizing substance); I (irritant) and „skin” (skin absorption may be just as important as inhalation). This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
PL
2-Naftyloamina (2-NA) występuje w postaci bezbarwnych kryształów o słabym, aromatycznym zapachu, które różowieją pod wpływem światła. Substancja nie występuje naturalnie w przyrodzie. Obecnie produkcja 2-naftyloaminy dla zastosowań przemysłowych jest prawnie zakazana w państwach Unii Europejskiej. W przeszłości substancję wykorzystywano do wytwarzania barwników azowych, jako przeciwutleniacz w przemyśle gumowym oraz w wytwórniach kabli. Obecnie jest stosowana w niewielkich ilościach głównie w laboratoriach badawczych. Narażonych na 2-naftyloaminę i jej sole w zakładach pracy w Polsce w 2017 r. według Centralnego Rejestru Danych o Narażeniu na Substancje Chemiczne, ich Mieszaniny, Czynniki lub Procesy Technologiczne o Działaniu Rakotwórczym lub Mutagennym było 208 osób, przy czym były to praktycznie tylko osoby pracujące w: laboratoriach wyższych uczelni, instytutach, inspekcjach, urzędach kontrolnych, jak również w laboratoriach zakładów farmaceutycznych i zakładu produkującego farby. Zgodnie z załącznikiem XVII do rozporządzenia REACH stosowanie 2-naftyloaminy podlega następującym ograniczeniom: nie może być ona wprowadzana do obrotu ani stosowana jako substancja lub w mieszaninach o stężeniach większych niż 0,1% masowo. Przy narażeniu zawodowym na 2-naftyloaminę i jej sole większe znaczenie ma oddziaływanie na drogi oddechowe oraz skórę niż wchłanianie z przewodu pokarmowego. Większość wchłoniętej dawki 2-naftyloaminy jest wydalana głównie z moczem. Mediany dawek lub stężeń śmiertelnych 2-naftyloaminy, które uzyskano w badaniach na zwierzętach doświadczalnych, wskazują, że jest to substancja szkodliwa po połknięciu. Główne objawy zatrucia ostrego to zaczerwienienie spojówek, łzawienie oczu, sinoniebieskie zabarwienie błon śluzowych, paznokci i skóry, ból i zawroty głowy oraz duszności. Na podstawie wyników badań dostępnych w piśmiennictwie do skutków działania toksycznego 2-naftyloaminy w warunkach narażenia podprzewlekłego i przewlekłego można zaliczyć kontaktowe zapalenie skóry, przewlekłe zapalenie pęcherza moczowego oraz raki pęcherza moczowego. 2-Naftyloamina i jej sole to przede wszystkim związki o potwierdzonym działaniu rakotwórczym na ludzi. W 1974 r. Międzynarodowa Agencja Badań nad Rakiem (IARC) uznała 2-naftyloaminę za czynnik rakotwórczy dla ludzi (grupa 1.) na podstawie wystarczających dowodów działania rakotwórczego na ludzi. Zgodnie z rozporządzeniem CLP 2-naftyloaminę i jej sole klasyfikuje się jako substancje rakotwórcze kategorii zagrożenia 1A z przypisanym kodem zwrotu wskazującym rodzaj zagrożenia H350 (Może powodować raka) oraz jako substancje o toksyczności ostrej kategorii zagrożenia 4 z przypisanym kodem zwrotu wskazującym rodzaj zagrożenia H302 (Działa szkodliwie po połknięciu). W Polsce wartość najwyższego dopuszczalnego stężenia (NDS) dla 2-naftyloaminy ustalono na poziomie 0 mg/m³ . Spośród pozostałych państw Unii Europejskiej jedynie Francja ma wyznaczoną wartość dopuszczalną na poziomie 0,005 mg/m³ , a Węgry i Włochy wartość chwilową na poziomie odpowiednio 0,005 mg/m³ i 0,001 mg/m³ . Przyjmując współczynnik Slope Factor (współczynnik kierunkowy prostej dawka-odpowiedź) dla człowieka opublikowany przez California EPA i biorąc pod uwagę wartość akceptowanego ryzyka 10-4 dla wystąpienia dodatkowych przypadków raka pęcherza moczowego, zaproponowano wartość NDS dla 2-naftyloaminy i jej soli na poziomie 0,003 mg/m³ . Zaleca się oznakowanie substancji jako „Carc. 1A”, co oznacza substancję rakotwórczą kategorii zagrożenia 1A (substancja wykazuje potencjalne działanie rakotwórcze na ludzi). Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
EN
2-Naphthylamine (2-NA) occurs in a form of colourless crystals with a weak, aromatic odour, which turn pink under the influence of light. The substance does not occur naturally in nature. The production of the 2-naphthylamine on an industrial scale is now banned in the UE. In the past this substance was used in the production of azo dyes, as an antioxidant in the rubber industry and in cable factories. 2-Naphthylamine is used in small amounts mainly in research laboratories. According to the data from the Polish Registry on Exposure to Chemicals, Their Mixtures, Factors or Technological Processes on Carcinogenic or Mutagenic Effects, 208 workers working in university laboratories, institutes, inspections, control offices as well as in laboratories of pharmaceutical and paint production plant were exposed to 2-NA and its salts in Poland in 2017. According to Annex XVII of REACH Regulation, 2-naphthylamine and its salts shall not be placed on the market, or used, as substances or in mixtures in concentrations greater than 0,1 % by weight. In occupational exposure to 2-naphthylamine and its salts, respiratory tract and skin are more important than gastrointestinal absorption. Most of the absorbed dose of 2-naphthylamine is mainly excreted in the urine. Median doses or lethal concentrations of 2-naphthylamine that were obtained in experimental animal studies indicate that it is harmful if swallowed. The main symptoms of acute intoxication are conjunctival redness, watery eyes, blue mucosa, nails, skin, pain and dizziness, shortness of breath. Based on the results of studies available in the literature, the effects of 2-naphthylamine under subchronic and chronic exposure may include contact dermatitis, chronic cystitis and bladder cancers. 2-Naphthylamine and its salts are compounds with proven carcinogenic humans. In 1974, The International Agency for Research on Cancer recognized 2-naphthylamine as a human carcinogen (group 1) based on sufficient evidence of a carcinogenic effect on humans. According to the CLP Regulation, 2-naphthylamine and its salts are classified as carcinogenic category 1A substances with the assigned hazard code H350 (May cause cancer) and as acute toxicity category 4 with the hazard code H302 assigned (Harmful if swallowed). In Poland, MAC (Maximum Admissible Concentration) value for 2-naphthylamine was set at 0 mg/m³ . In other EU countries, only France has set a MAC value of 0.005 mg/m³ while Hungary and Italy have a short-term value of 0.005 mg/m³ and 0.001 mg/m³ , respectively. Taking the Slope Factor for humans published by the California EPA and taking into account the accepted risk value of 10-4 for the occurrence of additional cases for bladder cancer, the MAC value for 2-naphthylamine and its salts is proposed to be 0.003 mg/m³ . The letters “Carc. 1A” should be used – the substance has carcinogenic potential for humans. This article discussess the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
PL
Trichlorek fosforylujest przezroczystą, bezbarwną lub żółtawą cieczą o nieprzyjemnym, ostrym zapachu. W kontakcie z wodą lub z parą wodną gwałtownie hydrolizuje, wydzielając chlorowodór i kwas fosforowy(V). Związek jest stosowany w przemyśle, przede wszystkim do produkcji alkilowych i arylowych triestrów kwasu fosforowego(V). Trichlorek fosforylu znalazł również zastosowanie w produkcji: plastyfikatorów, środków opóźniających palenie, cieczy hydraulicznych, insektycydów, farmaceutyków, dodatków do produktów naftowych oraz półproduktów do otrzymywania barwników. Jest stosowany także jako: czynnik chlorujący, regulator pH, katalizator, rozpuszczalnik w krioskopii, domieszka donorowa w półprzewodnikach krzemowych, a także jako odczynnik w laboratoriach. Trichlorek fosforylu jest zaklasyfikowany (ze względu na toksyczność ostrą) do kategorii zagrożenia 2. przy narażeniu drogą oddechową (wdychanie grozi śmiercią) oraz do kategorii zagrożenia 4. po połknięciu (działa szkodliwie po połknięciu). Ponadto związek jest sklasyfikowany do kategorii zagrożenia 1A jako substancja żrąca (powoduje poważne oparzenia skóry oraz uszkodzenia oczu) oraz do kategorii zagrożenia 1. jako substancja działająca toksycznie na narządy docelowe w wyniku narażenia powtarzanego (powoduje uszkodzenie narządów poprzez długotrwałe lub powtarzane narażenie). Zarówno w przypadkach ostrych, jak i przewlekłych zatruć inhalacyjnych trichlorkiem fosforylu podstawowym skutkiem było działanie drażniące na drogi oddechowe i oczy: pieczenie oczu i gardła, uczucie duszności, łzawienie, kaszel, skurcz oskrzeli, ból za mostkiem, zapalenie opłucnej. U narażonych obserwowano pogorszenie parametrów spirometrycznych płuc, a późnymi skutkami narażenia były problemy astmatyczne i obturacyjna choroba układu oddechowego. Dostępne wyniki badań na zwierzętach są słabo udokumentowane. Trichlorek fosforylu nie wykazuje działania mutagennego. W piśmiennictwie nie znaleziono informacji ani o rakotwórczym działaniu tej substancji, ani o jej działaniu embriotoksycznym lub teratogennym. Skutkiem krytycznym działania związku jest silne działanie drażniące na błony śluzowe oczu i górnych dróg oddechowych. Stężenie 0,48 mg/m3, stanowiące próg działania toksycznego trichlorku fosforylu w badaniach na szczurach i świnkach morskich, przyjęto jako wartość LOAEC. Po zastosowaniu współczynników niepewności obliczona na tej podstawie wartość najwyższego dopuszczalnego stężenia (NDS) trichlorku fosforylu wynosi 0,06 mg/m3. Proponuje się przyjęcie wartości NDS zgodnej z rekomendacją SCOEL i ACSH, tj. 0,064 mg/m3. Trichlorek fosforylu jest substancją działającą silnie drażniąco. W celu zapobiegania pikowym stężeniom substancji proponuje się ustalenie wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh) na poziomie 0,13 mg/m3 (2 razy wartość NDS). Nie ma merytorycznych podstaw do ustalenia wartości dopuszczalnego stężenia w materiale biologicznym (DSB) trichlorku fosforylu. Ze względu na działanie żrące trichlorku fosforylu proponuje się oznaczenie normatywu literą „C” – substancja żrąca. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu oraz inżynierii środowiska.
EN
Phosphoryl trichloride is a clear, colorless or yellowish liquid with an unpleasant, pungent odor. In contact with water or steam, it rapidly hydrolyses by releasing hydrogen chloride and phosphoric(V) acid. Phosphoryl trichloride is used in industry primarily for the production of alkyl and aryl triesters of phosphoric(V) acid. It is also used in the production of plasticizers, flame retardants, hydraulic fluids, insecticides, pharmaceuticals, gasoline additives and dye intermediates. Phosphoryl trichloride is also used as chlorinating agent, pH regulator, catalyst, solvent in cryoscopy, dopant for semiconductor grade silicon, and as reagent in laboratories. Phosphoryl trichloride is classified for acute toxicity as category 2 with inhalation (inhalation may lead to death) and as category 4 if swallowed (harmful if swallowed). In addition, it is classified as corrosive category 1A (causes severe skin burns and eye damage) and toxic to target organs due to repeated exposure, category 1 (causes damage to organs through prolonged or repeated exposure). Both in acute and chronic cases of inhalation exposure, the primary effect was irritating to the respiratory tract and eyes (burning eyes and throat, feeling of breathlessness, tearing, coughing, bronchospasm, pain behind the sternum, pleurisy). In exposed workers, deterioration of pulmonary spirometric parameters was observed. The late effects of exposure were asthmatic problems and obstructive respiratory disease. Available animal studies are poorly documented. Phosphoryl trichloride did not show any mutagenic effects. There is no information on the carcinogenic, embryotoxic or teratogenic effects of this substance in the available literature. The critical effect of the action of phosphoryl trichloride is a strong irritation on the mucous membranes of the eyes and upper respiratory tract. A concentration of 0.48 mg/m³ constituting the threshold for toxic effects of phosphoryl trichloride in studies in rats and guinea pigs was taken as the LOAEC value. After applying the uncertainty coefficients, the MAC value of phosphoryl trichloride calculated on this basis is 0.06 mg/m³ . It is proposed to adopt the MAC value in accordance with the SCOEL and ACSH recommendation, i.e., 0.064 mg/m³ . Phosphoryl trichloride is a strongly irritating substance, in order to prevent peak concentrations of this substance it is proposed to set the maximum allowable short-term concentration (MAC-STEL) at level 2 x MAC value, i.e., 0.13 mg/m³ . There are no substantive foundations to determine the permissible biological exposure indices to phosphoryl trichloride (DSB). Due to the corrosive effect of phosphoryl chloride, it is proposed to label it with the letter “C” (a substance with a corrosive effect). This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
PL
Trimetyloamina (TMA) w temperaturze pokojowej jest gazem palnym o bardzo nieprzyjemnym zapachu zepsutych ryb. Próg zapachowy trimetyloaminy znajduje się w przedziale 0,5 ÷ 1,9 μg/m3. Substancja ta bardzo dobrze rozpuszcza się w wodzie. Trimetyloamina jest dostępna jako: bezwodny sprężony gaz, 33-procentowy roztwór w etanolu lub 40-procentowy roztwór wodny. Substancja ta jest głównie stosowana w syntezie organicznej do produkcji soli choliny, a przede wszystkim chlorku choliny. Trimetyloamina jest również stosowana do produkcji: substancji słodzących, skrobi kationowej, środków wabiących owady, środków dezynfekujących, żywicy anionowo-wymiennej mocnej zasady, a także jako przyspieszacz w procesie wulkanizacji, przy produkcji tworzyw sztucznych oraz do produkcji czwartorzędowych związków amoniowych. Ponadto trimetyloaminę stosuje się jako czynnik ostrzegawczy do nawaniania gazu i czynnik flotacyjny. Substancja ta jest zamieszczona w projekcie dyrektywy ustalającej 5. wykaz wskaźnikowych wartości dopuszczalnych z wartością OEL – 4,9 mg/m3 oraz krótkoterminową STEL – 12,5 mg/m3. Głównym skutkiem ostrego i przewlekłego działania trimetyloaminy jest działanie drażniące. Trimetyloamina może być szkodliwa dla ludzi narażonych drogą inhalacyjną, pokarmową lub przez skórę. Narządami krytycznymi w przypadku narażenia na trimetyloaminę są: oczy, skóra oraz górne drogi oddechowe. Próg działania drażniącego trimetyloaminy u ludzi narażonych jednorazowo został ustalony na poziomie 1 481 mg/m3 (mediana). U pracowników narażonych zawodowo na związek o stężeniu 48,5 mg/m³ i większym obserwowano umiarkowane skutki działania drażniącego na: układ oddechowy, oczy oraz skórę. U ludzi zatrudnionych przy produkcji i konfekcjonowaniu trimetyloaminy, narażonych na związek o stężeniach 0,24 ÷ 19,5 mg/m³ (głównie poniżej 12,1 mg/m³), nie obserwowano żadnychskutków zdrowotnych narażenia. Nie ma wyników badań dotyczących działania uczulającego trimetyloaminy. Trimetyloamina nie wykazuje działania mutagennego ani genotoksycznego. W dostępnym piśmiennictwie i bazach danych nie znaleziono informacji odnośnie działania rakotwórczego trimetyloaminy. W badaniach na myszach stwierdzono działanie embriotoksyczne trimetyloaminy. Wartość NOAEL (największa dawka substancji, przy której nie występuje statystycznie lub biologicznie istotny wzrost częstości występowania szkodliwych skutków lub ich nasilenia w grupie narażanej w porównaniu z wynikami badań grupy kontrolnej) dla myszy ustalono na poziomie 150 mg/kg mc./dzień. W 2-tygodniowym badaniu na szczurach ustalono wartość LOAEC (najmniejsze stężenie, przy którym występuje statystycznie lub biologicznie istotny wzrost częstości występowania szkodliwych skutków lub ich nasilenia w grupie narażanej w porównaniu z wynikami badań grupy kontrolnej) wynoszącą 183,75 mg/m³. Skutkiem krytycznym było działanie drażniące trimetyloaminy. Stwierdzono, że działanie układowe wystąpiło przy większych stężeniach. Wartość LOAEC dla działania drażniącego związku na: oczy, nos i gardło u ludzi ustalono na poziomie 48 mg/m³. Nie obserwowano skutków działania toksycznego trimetyloaminy poniżej stężenia 12,1 mg/m³. W większości państw, podobnie jak do tej pory w Polsce, obowiązuje wartość dopuszczalna (NDS) trimetyloaminy wynosząca 12 mg/m³, natomiast dopuszczalne stężenie chwilowe (NDSCh) – 24 mg/m³. W 2017 r. eksperci Komitetu Naukowego ds. Dopuszczalnych Norm Zawodowego Narażenia na Oddziaływanie Czynników Chemicznych w Pracy (SCOEL) zaproponowali stężenie 4,9 mg/m³ jako wartość OEL dla trimetyloaminy w celu uniknięcia szkodliwych skutków działania substancji na drogi oddechowe oraz działania drażniącego sensorycznego. Stwierdzono, że stężenie to będzie zabezpieczało również przed działaniem układowym trimetyloaminy. W celu uniknięcia “uciążliwości zapachowej” i aby zabezpieczyć pracowników przed działaniem drażniącym trimetyloaminy w SCOEL zalecono wartość krótkoterminową STEL na poziomie 12,5 mg/m³. W badaniu na działanie drażniące sensoryczne (czuciowe) na samcach myszy Swiss OF1 wyznaczona wartość RD50 dla trimetyloaminy wynosiła 147,62 mg/m3. Na podstawie wartości RD50 (147,62 mg/m3), stosując współczynnik 0,03, zaproponowano wartość NDS trimetyloaminy na poziomie 4,9 mg/m³. Wartość ta powinna zapobiegać skutkom zdrowotnym narażenia zawodowego na trimetyloaminę zarówno miejscowym, jak i układowym. Z uwagi na działanie drażniące trimetyloaminy na drogi oddechowe zaproponowano zmniejszenie obecnie obowiązującej wartości NDSCh ze stężenia 24 mg/m3 na stężenie 12,5 mg/m3. Normatyw oznakowano literą „I” (substancja o działaniu drażniącym). Nie ma podstaw merytorycznych do ustalenia wartości dopuszczalnego stężenia w materiale biologicznym (DSB).
EN
Trimethylamine (TMA) is a gas at ambient temperature, which has a pungent, fishy odour. It is commercially available as a compressed gas, 40% aqueous solution or a 33% solution in ethanol. It is used in organic synthesis, especially of choline salts, as a warning agent for natural gas and flotation agents, in the production of cationic starches, quaternary ammonium compounds, intense sweeteners and strongly basic anion exchange resins. Moreover, it is used in the production of disinfectants and insect attractants. TMA is irritating to the human respiratory tract, skin and eyes. The threshold of irritation was reported to be 1481 mg/m3 (median) after a single dose. No effects were observed in workers exposed to 0.24-19.5 mg/m³, most measurements being below 12.1 mg/m3 . A LOAEC of 48 mg/m³ was established for human based on eyes, nose and throat irritation. Animal data with repeated inhalation exposure over 2 weeks revealed a LOAEC of 183.75 mg/m³ based on respiratory irritation in a rat study. Embryotoxic effects were observed in mice (NOAEL of 150 mg/kg bw/day). The Scientific Committee for Occupational Exposure Limits to Chemical Agents (SCOEL) has established OEL of 4.9 mg/m³ and STEL of 12.5 mg/m³. A MAC value has been derived using the RD50 value (147.62 mg/m3 for TMA) and multiplying it by a factor of 0.03. The Expert Group for Chemicals Agents has proposed to reduce the current MAC value from 12 mg/m³ to 4.9 mg/m³ and the current STEL value from 24 mg/m³ to 12.5 mg/m³, which is also in accordance with the values recommended by SCOEL. It has been proposed to remain the “I” (irritant) labelling of TMA. No bases for a BEI value have been found.
PL
Fenoloftaleina jest bezbarwnym i bezwonnym ciałem stałym o budowie krystalicznej. W formie sproszkowanej ma kolor biały lub bladożółty. Jest nielotna, praktycznie nierozpuszczalna w wodzie, natomiast dobrze rozpuszcza się w etanolu. Nie występuje jako produkt naturalny. Syntetyczna substancja jest stosowana jako wskaźnik pH w laboratoriach, podczas prac związanych z obróbką powierzchni metali w galwanizerniach i w lakierniach oraz do pomiaru nasycenia betonu ditlenkiem węgla. Do końca ubiegłego wieku była powszechnie stosowana jako składnik środków przeczyszczających dostępnych bez recepty – dopiero w 1999 r. w agencji Żywności i Leków w USA (FDA, ang. Food and Drug Administration) usunięto fenoloftaleinę z listy substancji uznanych za bezpieczne. W Polsce w 2016 r. prace z fenoloftaleiną zgłosiło 255 zakładów pracy, z czego większość stanowiły laboratoria, a liczba narażonych osób wynosiła 2,5 tysiąca. Fenoloftaleina stosowana w dawkach terapeutycznych była dobrze tolerowana, rzadko zgłaszanymi skutkami ubocznymi były: uczucie dyskomfortu w jamie brzusznej, nudności, zmniejszone ciśnienie tętnicze i osłabienie. Przewlekłe stosowanie fenoloftaleiny powodowało: rozszerzenie okrężnicy, zmniejszenie grubości wyścielającej jelito błony śluzowej, zaburzenia gastryczne, odwodnienie i zaburzenie równowagi elektrolitów. W badaniu 13-tygodniowym, w którym fenoloftaleinę podawano zwierzętom doświadczalnym z paszą, myszy były bardziej wrażliwym gatunkiem od szczurów. W przypadku samców obserwowano zmiany w jądrach i najądrzach, a u zwierząt obu płci hipoplazję i martwicę komórek szpiku kostnego. Na podstawie wyników badań genotoksyczności wykazano, że fenoloftaleina działa jako promutagen i wywiera efekt klastogenny po aktywacji metabolicznej. W badaniach działania fenoloftaleiny na rozrodczość zwierząt wykazano jej szkodliwy wpływ na funkcje rozrodcze samców. W Unii Europejskiej (UE) fenoloftaleina jest zaklasyfikowana jako substancja mutagenna kategorii 2 oraz działająca szkodliwie na rozrodczość kategorii 2 (ze względu na wpływ na płodność). U osób stosujących leki przeczyszczające oparte na fenoloftaleinie w badaniach kliniczno-kontrolnych obserwowano niewielki wzrost ryzyka raka jelita grubego i raka jajnika, zwłaszcza przy intensywnym stosowaniu tych środków, ale zależność nie była istotna statystycznie. W 2-letnim badaniu rakotwórczości przeprowadzonym w ramach Narodowego Programu Toksykologicznego w USA (NTP, ang. National Toxicology Program) u samców szczurów zaobserwowano istotny wzrost liczby przypadków łagodnego guza chromochłonnego rdzenia nadnerczy oraz gruczolaka i raka z nabłonka kanalików nerkowych, a u myszy obu płci odnotowano istotny wzrost liczby przypadków mięsaka histiocytarnego. Ponadto u samic wykazano wzrost liczby przypadków złośliwego chłoniaka (wszystkich typów) oraz chłoniaka grasicy i łagodnych nowotworów jajnika, w związku z czym fenoloftaleina została uznana za substancję o przewidywanym działaniu rakotwórczym na ludzi (NTP R). W eksperymencie przeprowadzonym na heterozygotycznych myszach p53(+/-) obu płci potwierdzono wzrost liczby przypadków chłoniaka. Eksperci Unii Europejskiej zaklasyfikowali fenoloftaleinę do kategorii 1B substancji rakotwórczych, czyli do substancji co do których wiadomo lub istnieje domniemanie, że są rakotwórcze dla człowieka, przy czym klasyfikacja opiera się na wynikach badań przeprowadzonych na zwierzętach. W Europejskiej Agencji Chemikaliów (ECHA, ang. European Chemicals Agency) uznano fenoloftaleinę za substancję wzbudzającą szczególnie duże obawy (SVHC). Obliczone na podstawie wyników badań NTP dodatkowe ryzyko chłoniaka złośliwego przy narażeniu zawodowym na fenoloftaleinę o stężeniu 8,25 mg/m3 przez 40 lat wynosi 10-4. Zaproponowano przyjęcie jako wartości najwyższego dopuszczalnego stężenia (NDS) fenoloftaleiny stężenia 8 mg/m3. Ponieważ fenoloftaleina jest słabo rozpuszczalnym w wodzie ciałem stałym, w środowisku pracy będzie występować jedynie narażenie na pyły tej substancji, stąd zaproponowana wartość NDS powinna dotyczyć frakcji wdychalnej substancji. Proponuje się oznakowanie fenoloftaleiny jako „Carc. 1B” informujące, że jest to substancja rakotwórcza kategorii 1B oraz „Ft” informujące, że jest to substancja działająca szkodliwie na rozrodczość. Brak jest podstaw do ustalenia najwyższego dopuszczalnego stężenia chwilowego (NDSCh) fenoloftaleiny oraz wartości dopuszczalnej w materiale biologicznym (DSB).
EN
Phenolphthalein is a colorless and odorless crystalline solid; in a powdered form white or pale yellow. It is nonvolatile, practically insoluble in water, but it dissolves in ethanol. Phenolphthalein is not known to occur as a natural product. The synthetic substance is used as a pH indicator in laboratories, during work on metal surfaces in galvanizing plants as well as for measuring the saturation of concrete with carbon dioxide. Until the end of the 20th century, it was widely used as a component of non-prescription laxatives – in 1999 FDA removed phenolphthalein from the list of substances considered safe. In 2016 in Poland 255 enterprises were reported to work with phenolphthalein (mainly laboratories) and there were 2500 occupationally exposed people. Phenolphthalein used in therapeutic doses was well tolerated. Only a few side effects were reported: abdominal discomfort, nausea, reduced blood pressure and weakness. Chronic use of phenolphthalein resulted in widening of the colon, reduced thickness of the lining of the mucosa, gastric disorders, dehydration and electrolyte imbalance. In a 13-week study in which phenolphthalein was administered to laboratory animals with diets, mice turned out to be a more sensitive species from rats. Changes in testes and epididymides were observed in males and hypoplasia and bone marrow necrosis in males and females. The results of genotoxicity studies indicated that phenolphthalein acts as a promutagen and exerts a clastogenic effect after metabolic activation. Studies on the effect of phenolphthalein on the reproduction of animals indicated its harmful effect on reproductive functions of males. In the EU, phenolphthalein is classified as a category-2 mutagen and category-2 reproductive toxicant (due to its effect on fertility). A small increase in the risk of colorectal cancer and ovarian cancer was observed in case-control studies in patients using phenolphthalein-based laxatives (especially with intensive use of these agents), but the relationship was not statistically significant. In a 2-year NTP carcinogenicity study a significant increase in the number of benign phaeochromocytomas and adenomas of renal tubular epithelium was observed in male rats. There was also a significant increase in histiocytic sarcomas in mice of both sexes and in malignant lymphomas (of all types) and thymic lymphomas and benign ovarian tumors in females. Based on these experiments phenolphthalein has been identified as a substance reasonably anticipated as human carcinogen (NTP R). The experiment on heterozygous p53 (+/-) mice of both sexes confirmed an increase in lymphoma cases. Phenolphthalein is classified by European Union experts as a category-1B of carcinogenic substances, i.e. known or presumed human carcinogens, however the classification is largely based on animal evidence. The European Chemicals Agency (ECHA) identified phenolphthalein as a substance of very high concern (SVHC). Based on the NTP test results, the additional risk of malignant lymphoma at 8.25 mg/m3 occupational exposure to phenolphthalein for 40 years is 10-4. A concentration of 8 mg/m3 was proposed as the MACTWA value for phenolphthalein. Since phenolphthalein is a poorly water-soluble solid, only dust exposure of the substance will occur in the work environment, hence the proposed MAC value should concern the inhalable fraction of the substance. It is proposed to label phenolphthalein as „Carc. 1B” indicating that phenolphthalein is a category-1B carcinogen and „Ft” due to reprotoxicity. There are no bases for establishing the short-term exposure limit value (STEL) and the limit value in biological material (BEI).
PL
Chloroeten (chlorek winylu, CW) jest związkiem wielkotonażowym. Nie występuje naturalnie w przyrodzie. Otrzymuje się go wyłącznie na drodze syntezy chemicznej. W normalnych warunkach ciśnienia i temperatury jest gazem. Chloroeten łatwo skrapla się pod ciśnieniem i w tej postaci w temperaturze 40÷70 C polimeryzuje, tworząc polichlorek winylu (PVC). Światowa produkcja przekracza 40 mln ton rocznie. Około 98% całej produkcji chloroetenu jest stosowane do wytwarzania polichlorku winylu (PWC) i kopolimerów. Pozostałą część produkcji chloroetenu wykorzystuje się do syntezy 1,1,1-trichloroetanu (metylochloroformu). Narażenie zawodowe na chloroeten występuje podczas syntezy i polimeryzacji, a także podczas plastyfikacji oraz przetwórstwa polimerów i kopolimerów. Przetwórstwo chlorku winylu ma miejsce w wielu branżach przemysłu: tworzyw sztucznych, obuwniczego, gumowego, farmaceutycznego i in. Główną drogą narażenia zawodowego jest narażenie inhalacyjne. Wchłanianie chloroetenu przez drogi oddechowe jest bardzo szybkie, jednak zaraz po opuszczeniu strefy narażenia jego poziom we krwi gwałtownie maleje. Dzieje się tak wskutek szybkiego metabolizmu i wydalania chloroetenu. Najwięcej wchłoniętego chloroetenu gromadzi się w wątrobie, gdzie zachodzi jego biotransformacja. Najbardziej reaktywnymi produktami przemiany tego związku są tlenek chloroetylenu i aldehyd chlorooctowy. Proces detoksykacji zachodzi w wątrobie i polega na sprzęganiu wymienionych produktów z glutationem. W wyniku dalszych przemian metabolicznych powstają metabolity wydalane głównie z moczem. W małych stężeniach jest to główna droga wydalania. Wraz ze wzrostem stężenia ekspozycyjnego wzrasta ilość chloroetenu wydalana przez płuca w postaci niezmienionej. Chloroeten wykazuje bardzo małą toksyczność ostrą zarówno w badaniach na ochotnikach, jak i na zwierzętach. U ludzi w wyniku ostrego narażenia inhalacyjnego obserwowano głównie zaburzenia neurologiczne i psychiatryczne. W badaniach na zwierzętach obserwowano działanie depresyjne na ośrodkowy układ nerwowy, a w badaniu histopatologicznym ustalono uszkodzenia: wątroby, płuc, nerek, serca oraz zaburzenia krzepliwości krwi. U pracowników przewlekle narażonych na duże stężenia chloroetenu stwierdzono objawy chorobowe zwane zespołem lub chorobą chlorku winylu, w tym: ból i zawroty głowy, niewyraźne widzenie, zmęczenie, brak apetytu, duszności, objawy zespołu Raynauda (ból, drętwienie i mrowienie w kończynach górnych i dolnych, uczucie zimna w kończynach), utrata masy ciały. W badaniach klinicznych stwierdza się: zmiany twardzinopodobne skóry (pseudosklerodermia), akroosteolizę, alergiczne zapalenie skóry, polineuropatie obwodowe, zaburzenia neurologiczne, a także skutki hepatotoksyczne. W badaniach toksyczności przewlekłej przy narażeniu inhalacyjnym najlepiej jest udokumentowane działanie hepatotoksyczne związku, które zostało stwierdzone już w małym stężeniu 26 mg/m3 (10 ppm). Ponadto, istnieją dowody działania chloroetenu na układ naczyniowy i układ oddechowy. Działanie związku na: kości, nerki, śledzionę, krew i skórę zwierząt jest słabiej udokumentowane. Chloroeten posiada właściwości mutagenne/genotoksyczne, które stwierdzono w testach wykonanych w warunkach in vitro zarówno bez, jak i z aktywacją metaboliczną, a także w testach w warunkach in vivo. W testach przeprowadzonych w warunkach in vitro aktywność chloroetenu była znacznie silniejsza (z udziałem egzogennego układu metabolizującego). W badaniach epidemiologicznych wykazano zwiększoną częstość: aberracji chromosomowych, wymian chromatyd siostrzanych, występowania mikrojąder i uszkodzeń DNA w limfocytach krwi obwodowej pracowników narażanych na związek. Najczęściej skutki genotoksyczne obserwowano wśród operatorów reaktorów polimeryzacyjnych, którzy byli okresowo narażeni na bardzo duże stężenia chloroetenu. Chloroeten został sklasyfikowany jako kancerogen przez Międzynarodową Agencję Badań nad Rakiem (IARC), (grupa 1.) i Unię Europejską (kategoria zagrożenia 1.A). Uznano, że istnieją wystarczające dowody działania rakotwórczego chloroetenu na ludzi oraz na zwierzęta doświadczalne. Działanie rakotwórcze chloroetenu ma podłoże genotoksyczne i wynika z powstawania reaktywnych metabolitów, głównie tlenku chloroetylenu i aldehydu chlorooctowego. Reagując z DNA, działają one mutagennie na komórki somatyczne, głównie komórki śródbłonka. W ten sposób odgrywają znaczącą rolę w etiologii naczyniakomięsaka oraz innych nowotworów zarówno niezłośliwych, jak i złośliwych. Na podstawie wyników badań epidemiologicznych wykazano istotny związek przyczynowo-skutkowy między narażeniem na chloroeten a zapadalnością na takie nowotwory wątroby, jak naczyniakomięsak (ASL, ang. Angiosarcoma of the liver) czy rak wątrobowokomórkowy (HCC, ang.hepatocellular carcinoma). Występuje silna korelacja między liczbą zgonów z powodu nowotworów wątroby, a czasem trwania i wielkością narażenia oraz długością okresu latencji, który w przypadku naczyniakomięsaka wątroby wynosi od 10 do > 30 lat. Działanie rakotwórcze chloroetenu na: płuca, mózg, układ limfatyczny i krwionośny, skórę i układ pokarmowy (nowotwory inne niż nowotwory wątroby) jest słabiej udokumentowane i niejednoznaczne. Istnieją doniesienia o działaniu związku na funkcje rozrodcze kobiet i mężczyn oraz wadach wrodzonych ich potomstwa. Istniejące dane są obarczone błędami metodycznymi i nie stanowią jednoznacznych dowodów na działanie teratogenne i wpływ chloroetenu na rozrodczość u osób zawodowo narażonych na ten związek. W badanich na zwierzętach chloroeten wpływał na funkcje rozrodcze i rozwój prenatalny szczurów przy dużych stężeniach, przy czym wartość NOAEL ustalono na poziomie 2 860 mg/m3 (1 100 ppm). Na podstawie wyników przeprowadzonych badań stwierdzono, że narządem docelowym działania toksycznego chloroetenu w narażeniu przewlekłym u ludzi jest wątroba, a skutkiem krytycznym – rozwój nowotworów wątroby. W badaniach epidemiologicznych najlepiej udokumentowany jest wpływ zawodowego skumulowanego narażenia (CED, ang. cumulative exposure dose) na rozwój naczyniakomięsaka wątroby (ASL). Komitet Naukowy SCOEL oszacował ryzyko wystąpienia ASL na poziomie 3 10-4 w wyniku 40-letniego narażenia zawodowego na chloroeten o stężeniu 2,6 mg/m3(1 ppm). Uwzględniając powyższe wyliczenia, jak i akceptowany poziom ryzyka zawodowego dla czynników rakotwórczych zawarty w granicach od 10-4 do 10-3, zaproponowano wartość NDS chloroetenu na poziomie 2,6 mg/m3 (1 ppm). Oznacza to możliwość przyrostu liczby przypadków wystąpienia trzech nowotworów wątroby (ASL) na 10 000 osób. Nie ma podstaw do ustalenia wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh) oraz wartości dopuszczalnej w materiale biologicznym (DSB). Proponuje się oznakowanie chloroetenu „Carc. 1A”, informujące, że jest to substancja rakotwórcza kategorii zagrożenia 1.A. Proponowana wartość najwyższego dopuszczalnego stężenia jest zgodna z wartością przyjętą przez ACGIH i w Kanadzie oraz proponowaną przez SCOEL wartością wiążącą dla tego związku, jak również wartością wiążącą umieszczoną w dyrektywie Parlamentu Europejskiego i Rady (UE) 2017/2398 z dnia 12 grudnia 2017 r. zmieniającą dyrektywę 2004/37/WE w sprawie ochrony pracowników przed zagrożeniem dotyczącym narażenia na działanie czynników rakotwórczych lub mutagenów podczas pracy.
EN
Chloroethene (vinyl chloride) does not occur in nature. It is obtained exclusively in chemical synthesis. Under normal pressure and temperature conditions it is a gas. At 40–70 °C, it polymerizes to form polyvinyl chloride (PVC). It is a large-volume compound. Its annual global production exceeds 40 million t/year. About 98% of the total production is used to produce polyvinyl chloride (PVC) and copolymers. Chloroethene is also used in the synthesis of 1,1,1-trichloroethane (methyl chloroform) Exposure to chloroethene occurs during its synthesis and polymerization and during plastification and processing of polymers and copolymers that take place in many industries, including plastics, footwear, rubber and pharmaceutical industries. The main route of occupational exposure to chloroethene is inhalation. After cessation of exposure, the levels of chloroethene in blood fall sharply. Absorption of the compound through the respiratory tract is very rapid. Deposition of chloroethene in the body is limited due to its rapid metabolism and excretion. The largest amount of absorbed chloroethene accumulates in liver, where it undergoes biotransformation. The intermediate products of chloroethene metabolism, chloroethylene oxide and 2-chloroacetaldehyde, are the most reactive metabolites of this compound. The detoxification process takes place in the liver and relies on their conjugation with glutathione. As a result of further metabolism, final metabolites are formed which are excreted mainly with urine. In low concentrations, this is the main route of excretion. With the increase in the exposure concentration, the amount of chloroethene excreted by the lungs in the unchanged form increases. Chloroethene has a very low acute toxicity, which has been found in both volunteer and animal studies. In volunteers as a result of acute inhalation exposure to high concentrations, neurological and psychiatric disorders only were observed. In animal studies, depressive effects on the central nervous system were observed, and histopathological examination revealed damage of liver, lung, kidney, heart and blood clotting disorders. In workers chronically exposed to high concentrations of chloroethene, a syndrome of vinyl chloride disease was found, which includes symptoms of Raynaud's syndrome (pain, numbness and tingling in the upper and lower limbs, cold feeling in the limbs), pseudoscleroderma, acroosteolysis, allergic dermatitis, peripheral polyneuropathy, neurological disorders, and hepatotoxic effects. In animal studies chronically exposed by inhalation to chloroethene, the hepatotoxic effect of the compound is well documented. This effect has been found at a relatively low concentration of 26 mg/m3 (10 ppm). In addition, there is evidence that chloroethene affects the vascular and respiratory system. The effects of the compound on bones, kidneys, spleen, blood and animal skin are less documented. Chloroethene has mutagenic/genotoxic properties, as observed in in vitro tests both with and without metabolic activation, and in in vivo tests. In in vitro tests on bacterial strains, the activity of chloroethene was much stronger with the participation of an exogenous metabolic system. Epidemiological studies in workers exposed to chloroethene showed an increased incidence of chromosomal aberrations, sister chromatid exchanges, micronuclei in lymphocytes and DNA damage in peripheral blood lymphocytes. The highest frequency of genotoxic effects was observed among operators of polymerization reactors subject to periodic exposure to very high concentrations of chloroethene. Chloroetene has been classified as a carcinogen by the International Agency for Research on Cancer, IARC (Group 1) and the European Union (Category 1A). It was concluded that there was sufficient evidence of a carcinogenic effect of chloroethene in humans and sufficient evidence of carcinogenicity in experimental animals. Carcinogenic effect of chloroethene has a genotoxic basis and results from the formation of reactive metabolites, mainly chloroethylene oxide and 2-chloroacetaldehyde, which in reaction with DNA act mutagenically on somatic cells, mainly endothelial cells and thus play a significant role in the etiology of angiosarcoma. Epidemiological studies have demonstrated a significant causal link between exposure to chloroethene and the incidence of hepatic cancers: angiosarcoma of the liver (ASL) and hepatocellular carcinoma (HCC). Epidemiological studies have shown a correlation between the number of deaths from liver tumors and the duration and magnitude of exposure and the length of latency, which in the case of ASL ranges from 10 to >30 years. Carcinogenic effects of chloroethene on the lungs, brain, lymphatic and circulatory systems, skin and digestive system (cancers other than liver cancer) are less documented and ambiguous. There are reports of the effect of chloroethene on the reproductive functions of women and men and the defects of their offspring. Existing data do not provide unambiguous evidence of teratogenicity and reproductive effects in the case of occupational exposure. In animal studies, chloroethene affected fertility and prenatal development of rats at high concentrations, with a NOAEL of 2860 mg/m3 (1100 ppm). Available data indicate that the target organ of chloroethene toxicity in chronic exposure in humans is the liver, and the critical effect of exposure is the development of liver tumors. In epidemiological studies, the effect of occupational cumulative exposure dose (CED) on the development of angiosarcoma of the liver (ASL) is best documented. The SCOEL Scientific Committee using PBPK models estimated the risk of ASLs at 3 10-4 as a result of 40 years of occupational exposure to chloroethene in a concentration of 2.6 mg/m3 (1 ppm). Taking into account the above calculations, and the accepted level of occupational risk for carcinogens in the range from 10-4 to 10-3, the TWA of chloroethene at the level of 2.6 mg/m3 (1 ppm) has been proposed. This means an increase in the incidence of 3 liver cancers (ASL) per 10,000 people. There is no substantive basis to determine a short-term exposure limit (STEL) and acceptable concentration in biological material (DSB). It is proposed to label the compound as "Carc. 1A " – carcinogen category 1A. The proposed value is in line with the value adopted by ACGIH and in Canada and the binding value proposed by SCOEL for this compound, and the binding value included in Directive of the European Parliament and of the Council (EU) 2017/2398 of 12 December 2017 amending Directive 2004/37/EC on the protection of workers from the risks related to exposure to carcinogens or mutagens at work.
PL
2,2-Bis(4-hydroksyfenylo)propan (bisfenol A) jest ciałem stałym, występującym w postaci białych płatków lub kryształków. Stosowany jest głównie do produkcji żywic epoksydowych. Szacuje się, że do tego celu wykorzystywane jest 95% wyprodukowanego związku. Bisfenol A znajduje ponadto zastosowanie w produkcji: tworzyw poliwęglanowych, nienasyconych żywic poliestrowych, polisulfonowych i akrylowych oraz środków zmniejszających palność. Tworzywa poliwęglanowe używane są do produkcji emulsji, do tzw. papieru termicznego, wykorzystywanego w drukarkach termicznych (do drukowania różnego rodzaju: paragonów, biletów, faksów czy nalepek).Przy produkcji i stosowaniu 2,2-bis(4-hydroksyfenylo) propanu głównymi drogami narażenia zawodowego są układ oddechowy i skóra. Liczba osób narażonych zawodowo na 2,2-bis(4-hydroksyfenylo)propan nie jest znana, lecz ze względu na dość duże rozpowszechnienie żywic poliwęglanowych i epoksydowych narażenie może być liczone w tysiącach zatrudnionych. Ze względu na śladowe ilości pozostałości 2,2-bis(4-hydroksyfenylo)propanu w większości żywic, poziomy narażenia są zwykle minimalne. W Polsce 2,2-bis(4-hydroksyfenylo)propan stosuje się głównie jako: składnik kleju do elementów elektronicznych, stabilizator stosowany jako dodatek do PCV, dodatek do żywic epoksydowych czy składnik płynów hamulcowych. W 2010 r. tylko 4 osoby były zatrudnionena stanowiskach pracy, gdzie występowało narażeniena pyły 2,2-bis(4-hydroksyfenylo)propanu o stężeniach większych od obowiązującej wartości najwyższego dopuszczalnego stężenia (NDS), (tj. 5 mg/m3), z czego 2 osoby pracowały w dziale „Uprawy rolne, chów i hodowla zwierząt, łowiectwo, włączając działalność usługową”, a 2 – w transporcie wodnym. W 2013 r. nie odnotowano osób pracujących w warunkach narażenia na bisfenol A przekraczających wartość NDS. Dla szczurów i myszy wartości LD50 przy podaniu drogą pokarmową a także – dla królika – drogą dermalną, wynoszą powyżej 2 000 mg/kg mc. 2,2-Bis(4-hydroksyfenylo)propan sklasyfikowano jako substancję mogącą działać szkodliwie na płodność (Repr. Kat. 1B, H360F) oraz powodującą poważne uszkodzenie oczu (H318) i podrażnienie dróg oddechowych (H355). U pracowników mających podczas pracy kontakt z 2,2-bis(4-hydroksyfenylo)propanem występowały podrażnienia: oczu, skóry i dróg oddechowych. Na podstawie wyników doświadczeń przeprowadzonych na zwierzętach jednoznacznie wykazano, że 2,2-bis-(4-hydroksyfenylo)propan nie powodował podrażnień skóry, ale działał drażniąco na oczy. U szczurów narażanych inhalacyjnie na pył 2,2-bis(4-hydroksyfenylo)propanu obserwowano nieznaczne i odwracalne uszkodzenia nabłonka przewodu nosowego, co świadczy o podrażnieniu dróg oddechowych. W naskórkowych testach płatkowych u ludzi 2,2-bis(4-hydroksyfenylo)propan powodował stany zapalne skóry. Nie jest jednak jasne, czy przyczyną był bisfenol A, czy pokrewne żywice epoksydowe. Brak jest wyników badań działania uczulającego na zwierzętach, przeprowadzonych zgodnie z aktualnie obowiązującymi standardami. Toksyczność bisfenolu A była badana na kilku gatunkach zwierząt – na: myszach, szczurach i psach. U zwierząt podanie dożołądkowe 2,2-bis(4-hydroksyfenylo)propanu powodowało przede wszystkim: zahamowanie przyrostu masy ciała, zwiększenie masy wątroby, zaburzenia oddychania, odwodnienie, biegunki i padnięcie. Z badań toksyczności przewlekłej przy podaniu związku drogą pokarmową wynika, że narządami docelowymi działania są wątroba i nerki. Brak jest danych dotyczących mutagennego działania bisfenolu A w testach przeprowadzonych w warunkach in vivo. Działania takiego nie obserwowano w kilku testach w warunkach in vitro z zastosowaniem komórek ssaków i bakterii. W badaniach tych wykazano, że 2,2-bis(4-hydroksyfenylo) propan nie indukował mutacji genowych, nie powodował też zmian genów w drożdżach. Ujemne wyniki uzyskano także w testach oceniających aberracje chromosomowe i w testach wymiany chromatyd siostrzanych przeprowadzonych na komórkach ssaków. W dostępnym piśmiennictwie i bazach danych nie znaleziono informacji na temat rakotwórczego działania bisfenolu A na ludzi. Na podstawie danych z doświadczenia przeprowadzonego na myszach i szczurach obu płci wykazano, że narażenie trwające 103 tygodnie nie spowodowało żadnych zmian świadczących o działaniu rakotwórczym związku. Na podstawie wyników niektórych badań wykazano negatywny wpływ 2,2-bis(4-hydroksyfenylo)propanu na rozrodczość. Jest to związane z mechanizmem jego działania, albowiem na podstawie wyników badań przeprowadzonych w warunkach in vitro stwierdzono, że bisfenol A łączy się z receptorami estrogenowymi. Jednak dane dotyczące działania embriotoksycznego związku i jego wpływu na rozrodczość nie są jednoznaczne. Wątpliwości i sprzeczności w doniesieniach na temat wpływu 2,2-bis(4-hydroksyfenylo)propanu na rozrodczość i rozwój, a także niespójność danych uzyskanych w doświadczeniach na gryzoniach, zostały dokładnie omówione w przeglądzie Europejskiego Urzędu ds. Bezpieczeństwa Żywności (EFSA) z 2015 r. W badaniach przeprowadzonych zgodnie ze standardami FDA/NTCR 2,2-bis(4-hydroksyfenylo)propan wpływał na rozrodczość jedynie przy bardzo dużych dawkach, wywołujących również innego rodzaju efekty toksyczne. Na podstawie wyników obszernych badań przeprowadzonych z zastosowaniem szerokiego zakresu dawek nie potwierdzono wpływu 2,2-bis(4-hydroksyfenylo) propanu na rozrodczość i rozwój przy zastosowaniu związku w małych dawkach, poniżej 5 mg/kg mc. Na podstawie wyników badań epidemiologicznych przeprowadzonych w Chinach wykazano, że u pracowników narażonych zawodowo na bisfenol A występowało pogorszenie jakości nasienia. Nie można jednakże wykluczyć ewentualnego wpływu czynników współwystępujących w środowisku pracy. 2,2-Bis(4-hydroksyfenylo)propan w organizmie zwierząt jest sprzęgany i w postaci glukuronidu wydalany z moczem. Główną drogą wydalania jest kał, z którym (bez względu na drogę podania) w postaci niezmienionej usuwane jest 50 ÷ 80% podanej dawki. U ludzi 2,2-bis(4-hydroksyfenylo)propan jest sprzęgany z kwasem glukuronowym i siarkowym a następnie wydalany z moczem. Zarówno w Polsce, jak i w większości innych państw, dla 2,2-bis(4-hydroksyfenylo)propanu obowiązuje wartość NDS w powietrzu na stanowiskach pracy na poziomie 5 mg/m3 oraz najwyższa dopuszczalna wartość chwilowa (NDSCh) – 10 mg/m3. W Naukowym Komitecie ds. Dopuszczalnych Wartości Narażenia Zawodowego na Czynniki Chemiczne (SCOEL) zaproponowano ustanowienie wartości wskaźnikowego dopuszczalnego poziomu bisfenolu A w powietrzu środowiska pracy (OEL) na poziomie 2 mg/m3, wychodząc z wartości NOAEC dla działania drażniącego, ustalonego w doświadczeniu inhalacyjnym na szczurach. W SCOEL uznano, że brak jest toksykologicznych podstaw do ustalenia stężenia chwilowego (STEL) oraz oznakowania „skin”. Jako podstawę wyprowadzenia wartości NDS dla 2,2-bis(4-hydroksyfenylo)propanu przyjęto jego działanie toksyczne na nabłonek górnych dróg oddechowych zwierząt doświadczalnych w doświadczeniu inhalacyjnym. Zaproponowano dla frakcji wdychalnej bisfenolu A wartość NDS na poziomie 2 mg/m3. Wartość ta powinna chronić również przed toksycznym działaniem 2,2-bis(4-hydroksyfenylo)propanu na wątrobę i nerki. Brak jest podstaw merytorycznych do ustalenia wartości chwilowej NDSCh oraz wartości dopuszczalnej w materiale biologicznym (DSB). Normatyw oznakowano literą „I” – substancja o działaniu drażniącym oraz literą „A” – substancja o działaniu uczulającym.
EN
4,4’- Isopropylidenediphenol (bisphenol A) is a white solid present in the form of crystals or flakes. It is used mostly in the production of epoxy resins (appr. 95% of its consumption). It is also used in the polycarbonate plastics, unsaturated polyester, polysulphonte and polyacrylate resins as well as flame retardants. Polycarbonate plastics are used to make products such as emulsions for thermal printers employed for printing tickets, labels, receipts, faxes etc. The routes of occupational exposure during production and application of bisphenol A are the respiratory system and the skin. The exact number of occupationally exposed to 4,4’- -isopropylidenediphenol is not known but taking into account the wide use of polycarbonate and polyester resins it can be counted in thousands. Because of only trace amounts of bisphenol A in most of the resins, the levels of exposure are usually minimal. In Poland 4,4’- isopropylidenediphenol is used mainly as a component of glues for electronic parts, PVC stabilizer, addition components of epoxy resins and brake fluids. In 2010 only 4 persons were reported as occupationally exposed to bisphenol A dust in concentrations exceeding Polish OEL (5 mg/ m3 ) – 2 in the crop and animal production, hunting and related service activities sector and 2 in the water transport sector. In 2013 no workers exposed above OEL value were reported. Oral LD50 values beyond 2 000 mg/kg bw were found in the rat and mouse, and dermal LD50 values above 2 000 mg/kg are evident in the rabbit. 4,4’- Isopropylidenediphenol has been classified as Repr. 1B, H360F (may damage fertility or the fetus) and substance that causes serious eye damage (H318) and may cause respiratory system irritation (H355). In workers having occupational contact with 4,4’- -isopropylidenediphenol irritation of eyes, skin and respiratory system was observed. In animal experiments it was clearly shown that bisphenol A did not cause skin irritation, however, it was shown that the compound is an eye irritant. Slight and transient nasal tract epithelial damage was observed in rats exposed to bisphenol A dust which suggests that it appears to have a limited respiratory irritation potential. There are several reports of patients with dermatitis responding to BPA in patch tests, however, it is unclear whether bisphenol A or related epoxy resins were the underlying cause of the hypersensitive state. No reliable sensitisation animal data from experiments meeting the required standards are available. Toxicity of bisphenol A has been tested on mice, rats and dogs. The compound administered orally caused mainly a decrease in body weight gain; minor changes in organ weight, mostly in liver; respiratory disorders, diarrhea and death. From chronic experiments the liver and kidney seem to be the target organs. There are no in vivo data on mutagenic activity of bisphenol A. It also does not appear to produce either gene mutations or structural chromosome aberrations in bacteria, fungi or mammalian cells in vitro. The compound did not induce gene mutations in yeasts; sister chromatid exchange tests carried out on mammalian cells also gave negative effects. No information on human cancerogenicity of 4,4’- -isopropylidenediphenol has been found in the literature and databases available. In a 103-week test on rats and mice of both sexes no convincing evidence indicating carcinogenic action of bisphenol A was found. Some studies indicate negative action of 4,4’- -isopropylidenediphenol on reproduction which is a result of a mechanism of its action – in in vivo test the compound was found to bind to the nuclear estrogen receptors. However, data on the embryotoxic activity of bisphenol A and its effects on reproduction are not conclusive. Contradictory findings between the studies have been reported in several studies in rodents which was thoroughly discussed in the EFSA Report of 2015. In studies carried out in accordance with the FDA/ NTCR standards 4,4’- isopropylidenediphenol effects on reproduction have been seen only at high doses showing also other toxic effects. Comprehensive tests with a wide range of doses did not confirm effects of 4,4’-isopropylidenediphenol on reproduction and development at low doses below 5 mg/kg bw. In Chinese epidemiological studies, impaired sperm quality in workers occupationally exposed to bisphenol A has been found, however, the effect of other concurrent exposures cannot be excluded. 4,4’-Isopropylidenediphenol in all species studied is conjugated with glucuronic acid and excreted as glucuronid with urine. The major route of excretion is via faeces; regardless of the route of entry 50-80% of the administered dose is eliminated with faeces in the unchanged form. In humans the compound is excreted as glucuronide or sulphate conjugates in urine. In Poland as well as in most other countries 5 mg/m3 as OEL and 10 mg/m3 as STEL have been established for 4,4’- isopropylidenediphenol. Scientific Committee on Occupational Exposure Limits (SCOEL) has proposed to establish an Indicative Occupational Exposure Limit (IOEL) in workplace air at the level of 2 mg/m3 taking the inhalation NOAEC of 10 mg/m3 from the rat study as a starting point for recommending an OEL. The critical effect in this study was respiratory tract irritation. According to SCOEL there is no toxicological basis for recommending an additional specific short-term exposure limit (STEL). Assignment of “skin” notation was also not recommended. The proposed OEL value for 4,4’- isopropylidenediphenol (inhalable fraction) has been derived from its irritating action on nasal tract epithelium in an inhalation study on experimental animals. The proposed OEL value is 2 mg/m3 . This value should also protect workers against toxic effects on liver and kidney. There are no grounds for establishing a short- -term exposure limit (STEL) nor for recommending a biological limit value (BLV). It is also proposed to introduce the following assignments: “I” – irritating substance and “A” – sensitizing substance.
PL
Drewno jest surowcem przemysłu drzewnego, stosowanym w postaci drewna litego lub w formie przetworzonej. Zawodowe narażenie na pyły drewna występuje podczas obróbki i przerobu drewna. Największe poziomy stężeń pyłów drewna w środowisku pracy odnotowano w zakładach meblarskich i stolarskich. Liczba pracowników narażonych na pyły drewna w Polsce oszacowana w ramach projektu WOODEX (lata 2000-2003) wynosiła 310 tys., z czego 79 tys. było narażonych na stężenia pyłów drewna < 0,5 mg/m3, 52 tys. na stężenia: 0,5 ÷ 1 mg/m3, 63 tys. na stężenia: 1 ÷ 2 mg/m3, 72 tys. na stężenia: 2 ÷ 5 mg/m3 i 44 tys. na stężenia > 5 mg/m3. Zgodnie z danymi z bazy zawierającej wyniki pomiarów narażenia na pyły wykonane w wybranych branżach gospodarki w Polsce w latach 2001-2005, opracowanej w Instytucie Medycyny Pracy w Łodzi przy współpracy z Głównym Inspektoratem Sanitarnym, wartość średnia arytmetyczna stężeń pyłu wdychanego w sektorze produkcji drewna i wyrobów z drewna (z wyłączeniem mebli) wynosiła 2,08 mg/m3. Stężenie to wyliczono na podstawie 8602 przeprowadzonych pomiarów. W przypadku pyłów drewna twardego przekroczenia wartości NDS na stanowiskach pracy odnotowano w ponad 20% pomiarów, natomiast w przypadku drewna miękkiego – w poniżej 10% pomiarów. Narażenie na pyły drzew liściastych (drewno twarde, głównie dębowe i bukowe) lub w mieszaninie z gatunkami iglastymi (drewno miękkie) jest skorelowane z wystąpieniem gruczolakoraka nosa, natomiast nienowotworowe skutki oddechowe (oprócz astmy) nie są skorelowane ze specyficznym typem drewna. Astma zawodowa jest najczęściej wynikiem działania biologicznie aktywnych związków chemicznych obecnych w drewnie zarówno gatunków liściastych, jak i iglastych. Jednym z lepiej przebadanych gatunków drewna i źródłem wiedzy o astmie zawodowej są pyły drewna żywotnika olbrzymiego. Zarówno pyły drewna twardego, jak i miękkiego mogą upośledzać drożność dróg oddechowych, wywołując przewlekłe choroby płuc, a skutki narażenia, w zależności od rozmiaru cząstek drewna, dotyczą górnych lub dolnych dróg oddechowych. Zarejestrowano następujące choroby wśród pracowników narażonych na pyły drewna: przewlekłe zapalenie oskrzeli, zapalenia nosa i spojówek, podrażnienie skóry, jak również reakcje uczuleniowe skóry. Na podstawie wyników badań spirometrycznych wykazano zmniejszenie wskaźnika funkcji płuc w wyniku mechanicznego lub chemicznego podrażnienia tkanki płuc. Należy zaznaczyć, że zmiany czynnościowe układu oddechowego i wystąpienie astmy zawodowej stwierdzano u pracowników przemysłu drzewnego, głównie meblarskiego (bez historii atopii) o stężeniach poniżej 1 mg/m3 pyłów drewna. Z przeglądu wyników badań przeprowadzonych u ludzi oraz u zwierząt doświadczalnych wynika, że pyły drewna wykazują działanie mutagenne i genotoksyczne. Analiza DNA pobranego od osób z rakiem zatok przynosowych, zatrudnionych w narażeniu na pyły drewna, wykazała mutacje, głównie w genie k-ras, który jest jednym z najczęściej aktywowanych onkogenów w raku występującym u ludzi. Stwierdzono ponadto: mutacje h-ras u pacjentów z gruczolakorakiem, aberracje chromosomowe w limfocytach krwi obwodowej stolarzy, uszkodzenie nici DNA w hepatocytach szczurów, zwiększenie częstotliwości występowania mikrojąder w komórkach załamka jelita myszy i nabłonku nosa szczurów. Na podstawie wyników badań epidemiologicznych, w tym badań kliniczno-kontrolnych, wykazano związek między częstością występowania przypadków nowotworów nosa i zatok przynosowych a narażeniem na pył drewna. U narażonych na pyły drewna stwierdzono znacznie większe ryzyko wystąpienia gruczolakoraków, w porównaniu z ryzykiem występowania raka płaskonabłonkowego. Międzynarodowa Agencja Badań nad Rakiem uznała, że istnieją wystarczające dowody działania rakotwórczego pyłu drewna u ludzi i zaliczyła je do grupy 1., czyli substancji o udowodnionym działaniu rakotwórczym dla ludzi. Komisja Unii Europejskiej zaliczyła prace związane z narażeniem na pyły drewna twardego i mieszanego do procesów technologicznych klasyfikowanych jako rakotwórcze dla ludzi (wg dyrektywy 2004/37/WE) oraz ustaliła wartość wiążącą narażenia zawodowego (BOELV) dla frakcji wdychalnej pyłów drewna twardego na poziomie 5 mg/m3 z zaznaczeniem, że jeżeli występuje mieszanina pyłów drewna twardego z innymi pyłami drewna, to wartość najwyższego dopuszczalnego stężenia (NDS) dotyczy wszystkich pyłów drewna obecnych w mieszaninie. W Komitecie Naukowym SCOEL podział na drewna twarde i miękkie został zaniechany, a wskaźnikową dopuszczalną wielkość narażenia zawodowego py- łów drewna (dla frakcji wdychalnej 1 mg/m3, a dla pyłu całkowitego 0,5 mg/m3) zaproponowano, uwzględniając, oprócz ich działania drażniącego na górne i dolne drogi oddechowe, także działanie rakotwórcze. W Komitecie Doradczym ds. Bezpieczeństwa i Ochrony Zdrowia w Miejscu Pracy Komisji Europejskiej (ACSHW, Advisory Committee on Safety and Heath at Work) rozważano skutki zdrowotne narażenia na pyły drewna oraz uwarunkowania socjoekonomiczne i zaproponowano wartość wiążącą (BOELV) dla pyłów drewna twardego na poziomie 3 mg/m3, uznając, iż mniejsza wartość mogłaby spowodować zamknięcie wielu przedsiębiorstw, głównie małych, zatrudniających od 1 do 9 pracowników. Ustalenie wartości normatywu higienicznego pyłów drewna komplikuje fakt, że nigdy nie mamy do czynienia z narażeniem na samo drewno. Jest to narażenie, m.in. na związki chemiczne występujące naturalnie w drewnie (większość z nich wykazuje działanie drażniące i uczulające). Ponadto frakcja biologiczna (bakterie, pleśnie) występująca w pyłach drewna, głównie świeżego, jak również takie substancje konserwujące drewno, jak rozpuszczalniki organiczne czy formaldehyd mogą stanowić zagrożenie dla zdrowia pracowników. Kolejną zmienną rozpatrywaną przy ocenie ryzyka zawodowego są rozmiary cząstek emitowanych podczas przerobu drewna, które różnią się w zależności od rodzaju drewna i sposobu jego obróbki. Średnica aerodynamiczna cząstek mieści się na ogół w przedziale 10 ÷ 30 µm, co klasyfikuje je do frakcji ekstratorakalnej (wnikającej w obręb głowy) lub torakalnej (wnikającej w obszar tchawiczo- -oskrzelowy). Udział procentowy frakcji respirabilnej wynosi najczęściej 15 ÷ 20%. W celu ustalenia wartości NDS pyłów drewna uwzględniono dane pochodzące z badania przekrojowego przeprowadzonego u 161 osób zatrudnionych w narażeniu na pyły drewna w 54 zakładach meblarskich. U osób narażonych badano drożność nosa po narażeniu na pyły drewna mieszanego o stężeniu małym (0,17 ÷ 0,74 mg/m3), średnim (0,74 ÷ 1,42 mg/m3) oraz dużym (1,42 mg/m3). W porównaniu z okresem przed rozpoczęciem pracy, pyły drewna o stężeniu średnim i dużym istotnie statystycznie: zwiększały przekrwienie błony śluzowej nosa, zmniejszały pojemność jam nosowych i zmniejszały powierzchnię przekroju poprzecznego nosa po 4 i 7 h pracy. Stwierdzono istotną statystycznie zależność między stężeniem pyłu drewna a stopniem niedrożności nosa wyznaczonym metodą rynometrii akustycznej i oceną subiektywną. Wymienione objawy wystąpiły także, gdy stężenia pyłów były małe, lecz objawy te były nieistotne statystycznie. Ponadto, u osób z grupy kontrolnej zanotowano istotne różnice drożności nosa przed rozpoczęciem pracy w porównaniu z okresem po pracy, dlatego podważają one znaczenie obserwowanych zmian, gdy stężenia pyłów drewna są małe (0,17 ÷ 0,74 mg/m3). Międzyresortowa Komisja ds. NDS i NDN na 84. posiedzeniu w dniu 4.11.2016 r. po zapoznaniu się z dokumentacją i biorąc pod uwagę, poza naukową oceną ryzyka, również czynniki socjoekonomiczne, które zostały omówione z przedstawicielami branży drzewnej w Polsce, przyjęła stężenie 3 mg/m3 za wartość NDS dla frakcji wdychalnej wszystkich pyłów drewna. Proponowana wartość jest na poziomie proponowanej przez Komisję Europejską wartości wiążącej (BOELV) dla frakcji wdychalnej pyłów drewna twardego ustalonej na poziomie 3 mg/m3 , po uwzględnieniu uwarunkowań socjoekonomicznych przedsiębiorstw. Przyjęcie tej wartości, bez podziału na drewna twarde i miękkie, jest ponadto pewnym kompromisem między dotychczas obowiązującymi wartościami NDS dla pyłów drewna: 1) z wyjątkiem pyłów dębu i buku (4 mg/m3), 2) pyłów dębu i buku (2 mg/m3). Ze względu na fakt, że pyły drewna wykazują działanie: rakotwórcze, mutagenne i pylicotwórcze, ustalenie wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh) jest nieuzasadnione. Proponuje się oznakowanie pyłów drewna notacją: „Carc. 1” – substancja rakotwórcza kategorii 1., zgodnie z klasyfikacją Międzynarodowej Agencji Badań nad Rakiem oraz, ze względu na możliwe działanie uczulające – literą „A”.
EN
Wood is a raw material of the wood industry, which is used as a solid wood or in a processed form. Occupational exposure to wood dust occurs during processing and woodworking. The highest levels of wood dust concentrations in the working environment were recorded in the furniture and carpentry industries. The number of workers exposed to wood dust in Poland estimated during WOODEX project (2000-2003) amounted to 310 000, of which 79 000 workers were exposed to wood dust at concentrations 2–5 mg/m3 and 44 000 workers at concentrations >5 mg/m3. According to data from selected sectors of the economy in Poland in years 2001–2005 developed in collaboration with the Chief Sanitary Inspectorate at the Institute of Occupational Medicine in Łódź, the arithmetic mean value of inhaled wood dust concentration in the wood production and wood products sector (excluding furniture) was 2.08 mg/m3. This concentration was calculated on the basis of 8602 measurements. In the case of hardwood dust, exceeded values of NDS at worksites were reported in more than 20% of the measurements, whereas in case of softwood – in less than 10% of measurements. Exposure to dust from deciduous trees (hardwood, mainly oak and beech wood) or from a mixture with coniferous species (softwood) is correlated with nasopharyngeal adenocarcinomas, whereas non-neoplastic respiratory symptoms, excluding asthma, are not correlated with a specific type of wood. Occupational asthma is most often the result of action of the biologically active compounds present in some wood species (both hardwood and softwood). One of the better-known species of wood and source of knowledge about occupational asthma is the dust of red cedar wood. Hardwood and softwood dusts may impair clear airway, resulting in chronic lung disease. The health effects of exposure to wood dust concern the upper or lower respiratory tract depending on the size of wood particles. Occupational exposure to wood dust causes: chronic bronchitis, rhinitis and conjunctivitis, skin irritation and allergic skin reactions. Spirometry has shown the reduction of the lung function index as a result of mechanical or chemical irritation of lung tissue. It should be noted that changes in pulmonary function and the occurrence of occupational asthma was found in the wood industry workers, mainly employed in furniture industry (with no history of atopy) at concentrations below 1 mg/m3 of wood dust. A review of the studies in humans and in experimental animals shows that wood dust has mutagenic and genotoxic effects. Analysis of DNA taken from people with cancer of the paranasal sinuses and exposed to wood dust showed mutations, mainly in gene k-ras, which is one of the most frequently activated oncogenes in human cancers. Furthermore, h-ras mutations in adenocarcinoma patients, chromosomal aberrations in carpenter peripheral blood lymphocytes, damage to DNA strands in rats hepatocytes, increase in micronuclear frequency in cells of mouse intestine and rats nasal epithelium have been found. The relationship between the incidence of a nose and paranasal sinuses cancer and the exposure to wood dust was proved on the basis of results of epidemiological studies. The risk of adenocarcinoma was significantly higher as compared to the risk of squamous cell carcinoma. The International Agency for Research on Cancer concluded that there was sufficient evidence of carcinogenicity of wood dust in humans and assigned it to Group 1 – a substances with proven carcinogenic effects in humans. The Commission of the European Union included research on exposure to hard and mixed wood dust to technological processes classified as carcinogenic to humans (Directive 2004/37 / EC) and established BOELV value for inhalable wood dust fraction on a level of 5 mg/m3 indicating that if there is a mixture of hardwood dust with other wood dust then NDS refers to the total wood dust present in the mixture. SCOEL Scientific Committee resigned from the division into hardwood and softwood and proposed the exposure limit value for wood dust, taking into account not only its irritating effects on upper and lower respiratory tract but also carcinogenicity (inhalable fraction: 1 mg/m3, total dust 0.5 mg/m3). The health effects of exposure to wood dust and the socio-economic conditions have also been considered by the Committee on Safety and Health at Work (ACSHW), which has proposed BOELV value for hardwood dusts of 3 mg/m3, taking into account that the lower value would result in the closure of many companies, mostly small, employing from 1 to 9 employees. Establishment of the hygienic standards of wood dust is complicated by the fact that we are never exposed to the wood itself. At the same time, we are exposed to naturally occurring chemicals in wood (most of them are irritating and sensitizing). Moreover, biological fraction (bacteria, mold) found in wood dust, mainly fresh, as well as wood preservatives such as organic solvents or formaldehyde, increase the health risk. Another variable considered when assessing risk associated with exposure to wood dust is the particle size emitted during wood processing, which varies according to the type of wood and its treatment. Aerodynamic diameter of the particles is generally in the range of 10 to 30 m, which classifies them into an extra thoracic fraction (penetrating head area) or thoracic fraction (penetrating the trachea bronchial area). Percentage of respirable fraction is usually 15–20%. When setting the NDS value for wood dusts, data from a cross-sectional survey of 161 people employed in wood dust exposure in 54 furniture companies were used. Nasal patency was examined after exposure to mixed wood dust at a low concentration (0.17–0.74 mg/m3), mean (0.74–1.42 mg/m3) and high (1.42 mg/m3). With regard to nasal patency before commencement of the work, exposure to medium and high concentration of wood dust significantly increased nasal congestion, reduced nasal cavity capacity and reduced nasal cross-sectional area as a result of 4–7 hours of exposure. There was a statistically significant relationship between the concentration of wood dust and nasal obstruction grade determined by the method of acoustic rhinometry and subjective assessment. These symptoms also occurred when dust concentrations were small, but these symptoms were not statistically significant. Furthermore, patients in the control group had significant differences in nasal passivity before commencement of work compared to the post-work period, thus undermining the observed changes at low concentrations (0.17–0.74 mg/m3) of wood dust. Taking into account the above data as well as socioeconomic factors discussed with wood industry representatives in Poland, the Interdepartmental Commission on NDS and NDN at its 84th meeting on November 4, 2016, adopted a concentration of 3 mg/m3 for the maximum permissible concentration (NDS) for the inhalable fraction of all wood dust. Socioeconomic considerations were also taken into account in determining BOELV value for the inhalable wood dust fraction (3 mg/m3) in the European Union. The adoption of this value without distinction for hardwood and softwood is a compromise between current NDS values for wood dust with the exception of oak and beech dusts (4 mg/m3) and beech and oak dust (2 mg/m3). The proposed value of NDS is at the level proposed by the European Commission for BOELV for the hardwood dust inhalable fraction (3 mg/m3), which takes into account socio-economic conditions of companies. Due to the fact that wood dusts are carcinogenic, mutagenic and cause pneumoconiosis, the determination of NDSCh values is unjustified. It is proposed to mark the wood dust with notation "Carc. 1”– category 1 carcinogen, according to the classification of the International Agency for Research on Cancer, and with letter “A” because of possible sensitization.
PL
Mocznik jest niepalnym, bezbarwnym lub białym ciałem stałym o budowie krystalicznej. Ma słaby zapach amoniaku i orzeźwiający, słony smak. Mocznik jest higroskopijny i bardzo dobrze rozpuszcza się w wodzie. Przy długotrwałym przechowywaniu oraz w roztworach wodnych substancja rozkłada się częściowo z wydzieleniem amoniaku i ditlenku węgla. Mocznik jest stosowany jako: składnik nawozów i dodatek do pasz dla zwierząt; surowiec do produkcji tworzyw sztucznych, impregnatów ognioodpornych, klejów; reduktor w selektywnej redukcji katalitycznej (SCR) stosowanej w celu zmniejszenia emisji tlenków azotu ze źródeł stacjonarnych i mobilnych; surowiec do produkcji leków, kosmetyków i produktów chemii gospodarczej; środek do usuwania oblodzenia z dróg, torów kolejowych i pasów startowych; wprzemyśle spożywczym jako dodatek do wyrobów piekarniczych, napojów alkoholowych i produktów na bazie żelatyny oraz jako odczynnik w laboratoriach. W 2012 r. światową produkcję mocznika oszacowano na około 184 mln ton i jest przewidywany jego dalszy wzrost. W Europejskiej Agencji Chemikaliów mocznik zarejestrowało pięć firm z Polski. Liczba osób narażonych na mocznik w dwóch, spośród tych zakładów, wynosi łącznie 201 osób. Mocznik jest produktem endogennym, powstaje w wątrobie w cyklu mocznikowym z amoniaku tworzącego się w wyniku katabolizmu aminokwasów i białek, jest następnie wydalany przez nerki. Dorosły człowiek wydala około 20 ÷ 35 g mocznika z moczem w ciągu dnia. Informacje dotyczące skutków mocznika u ludzi pochodzą z obserwacji pacjentów z niewydolnością nerek, u których występują zwiększone stężenia mocznika we krwi. Jako skutki szkodliwe działania mocznika opisywano: bóle głowy, nudności, wymioty, omdlenia, dezorientację, zaburzenia stężenia elektrolitów we krwi. Mocznik ma słabe działanie drażniące na oczy i nie działa drażniąco na skórę. Mocznik o stężeniach powyżej 10-procentowych ma działanie keratolityczne – ułatwia złuszczanie i zwiększa przepuszczalność warstwy rogowej przez co zwiększa aktywność terapeutyczną wielu leków miejscowych. W badaniach na zwierzętach mocznik wykazywał niewielką toksyczność ostrą i przewlekłą, nie wykazywał działania rakotwórczego ani szkodliwego na rozrodczość. W UE nie ma zharmonizowanej klasyfikacji mocznika. Mocznik ma bardzo małą prężność par i narażenie będzie miało miejsce wyłącznie na pyły mocznika. W celu zabezpieczenia pracowników przed uciążliwym działaniem cząstek stałych (pyłów) mocznika zaproponowano przyjęcie wartości najwyższego dopuszczalnego stężenia (NDS) na poziomie 10 mg/m3, podobnie jak dla innych pyłów niesklasyfikowanych ze względu na toksyczność, ale stwarzających zagrożenie ze względu na utrudnienie widoczności. Nie ma podstaw do ustalenia wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh) i dopuszczalnego stężenia w materiale biologicznym (DSB).
EN
Urea is a non-flammable, colorless or white crystalline solid. It has a faint aroma of ammonia and a cooling, saline taste. It is hygroscopic and highly soluble in water. During long-term storage and in aqueous solutions urea partly decomposes with the release of ammonia and carbon dioxide. Urea is used as a component of fertilizer and animal feed; raw material for production of plastics, flame-proofing agents, adhesives, medicines, cosmetics and household products; reductant in selective catalytic reduction (SCR) systems used to reduce NOx emissions from stationary and mobile sources; deicing compound on roads, railroad tracks and airport runways; in the food industry as an additive in bakery products, alcoholic beverages and gelatine-based products and as a reagent in laboratories. In 2012, world production of urea was estimated to be around 184 million tonnes and is predicted to increase further. In the European Chemicals Agency, urea was registered by 5 companies from Poland. The number of workers exposed to urea in 2 of these plants is 201. Urea is an endogenous product, formed in a liver in the urea cycle from ammonia formed by the catabolism of amino acids and proteins, later is excreted by kidneys. An adult man excretes about 20 ÷ 35 g of urea in a urine during a day. Most of the information on the effects of urea in humans comes from patients with renal insufficiency who have elevated urea levels. Adverse effects of urea include headache, nausea, vomiting, syncope, confusion, electrolyte abnormalities in the blood. Urea has a slight irritating effect on the eyes and does not irritate skin. At concentrations above 10% urea has a keratolytic effect – it facilitates peeling and increases the permeability of the stratum corneum, thereby increasing the therapeutic activity of many topical medications. Based on animal studies urea has low acute and chronic toxicity and no carcinogenic or reproductive toxicity. Urea does not meet the classification criteria as a CLP hazardous substance. Due to very low vapor pressure, exposure is possible to urea dust only. Therefore, to protect workers from nuisance of particulate matter (dust) of urea, the MAC (TWA) value of 10 mg/m3 was recommended as for other dusts not classified for toxicity but posing a hazard for visibility reasons. There is no basis for determining the short-term exposure limit value (STEL) and the biological exposure index value (BEI).
PL
Kumen jest lotną, bezbarwną cieczą o ostrym aromatycznym zapachu podobnym do zapachu benzyny. Jest stosowany w syntezie organicznej do produkcji fenolu i acetonu, jako rozpuszczalnik: farb, lakierów i żywic, a także dodatek do paliw lotniczych. Kumen stosuje się także w przemyśle drukarskim i gumowym. Według informacji udostępnionych przez Państwowy Inspektorat Sanitarny w Polsce nie odnotowano w 2010 r. przekroczeń obecnie obowiązującej wartości NDS kumenu, tj. 100 mg/m³, natomiast w 2014 r. 51 osób było narażonych na kumen o stężeniach wynoszących od 0,1 (tj. 10 mg/m³) do 0,5 obowiązującej wartości NDS (tj. 50 mg/m³). Pary kumenu wykazują działanie drażniące na drogi oddechowe. U ludzi duże stężenia kumenu w powietrzu spowodowały bolesne podrażnienie oczu i górnych dróg oddechowych. Kumen wykazuje niską toksyczność ostrą. U zwierząt doświadczalnych głównymi skutkami narażenia inhalacyjnego na kumen było upośledzenie funkcji ośrodkowego układu nerwowego. W narażeniu przewlekłym kumen wykazywał działanie hepatotoksyczne. W badaniach w warunkach in vitro kumen nie wykazywał działania genotoksycznego ani mutagennego. W badaniach in vivo test mikrojądrowy dał wynik dodatni jedynie wówczas, gdy kumen podano dootrzewowo szczurom. Natomiast test kometowy wskazywał na zależny od wielkości dawki kumenu wzrost uszkodzenia DNA tylko w hepatocytach u samców szczurów i komórkach płuc samic szczurów. Z kolei, metabolit kumenu – α-metylostyren nie wykazywał działania mutagennego w testach na bakteriach, natomiast powodował uszkodzenie chromosomów w kulturach komórkowych oraz komórkach gryzoni. Eksperci IARC zaliczyli kumen do grupy 2.B – czynników przypuszczalnie rakotwórczych dla ludzi na podstawie wystarczających dowodów działania rakotwórczego kumenu na zwierzęta. Inhalacyjne narażenie myszy prowadziło do wzrostu częstości występowania: gruczolaków i raków pęcherzykowych oskrzelikowych, naczyniakomięsaków krwionośnych w śledzionie samców myszy oraz gruczolaków i raków wątrobowokomórkowych u samic myszy. U szczurów narażanych inhalacyjnie na kumen stwierdzono wzrost występowania gruczolaków nabłonka oddechowego nosa u zwierząt obu płci. U samców szczurów obserwowano wzrost występowania gruczolaków i raków kanalików nerkowych. Kumen jest dobrze wchłaniany wszystkimi drogami narażenia. Jest substancją lipofilną, która jest dobrze rozmieszczana w organizmie. Metabolizm kumenu w organizmie przebiega z udziałem cytochromu P-450. Głównym metabolitem zidentyfikowanym w moczu był 2-fenylo-2-propanol, natomiast w wydychanym powietrzu wykryto kumen oraz α-metylostyren. W 2014 r. eksperci Scientific Committee for Occupational Exposure Limits to Chemical Agents (SCOEL) przygotowali zmianę wartości wskaźnikowej kumenu, tj. zmniejszenie stężenia 100 mg/m3 (dyrektywa 2000/39/WE) do 50 mg/m³, natomiast pozostawienie wartości STEL na tym samym poziomie, tj. 250 mg/m³. Związek zaliczono do grupy D związków rakotwórczych, czyli do związków, które nie działają genotoksycznie i nie oddziałują na DNA, dla których można ustalić wartość dopuszczalną na podstawie wartości NOAEL. Polska nie zgłosiła uwag do proponowanej przez SCOEL wartości OEL oraz STEL dla kumenu w trakcie konsultacji publicznych, które trwały do września 2014 r. Nowa wartość wskaźnikowa została ustalona na pod-stawie 3-miesięcznego badania National Toxicology Program (NTP) na szczurach i myszach oraz przyjętej wartości NOAEC na poziomie około 310 mg/m³ (62,5 ppm) dla działania hepatotoksycznego kumenu. Eksperci SCOEL ustalili wartość STEL kumenu na poziomie 250 mg/m³, ze względu na działanie drażniące par kumenu na drogi oddechowe oraz na ośrodkowy układ nerwowy. Ponadto przyjęto notację „skin” dla kumenu, ze względu na możliwość wchłaniania się substancji przez skórę. Za dopuszczalne stężenie w materiale biologicznym (DSB) eksperci SCOEL ustalili 7 mg 2-fenylo-2-propanolu/g kreatyniny (po hydrolizie moczu). Wartość najwyższego dopuszczalnego stężenia (NDS) kumenu ustalono na podstawie działania hepatotoksycznego oraz nefrotoksycznego (zwiększenie masy wątroby i nerek). Za wartość NOAEC przyjęto stężenie kumenu równe 310 mg/m3 ustalone na podstawie wyników 3-miesięcznego badania NTP na szczurach. Zaproponowano zmniejszenie do 50 mg/m³ obowiązującej wartości NDS – 100 mg/m3. Z uwagi na działanie drażniące par kumenu na drogi oddechowe oraz na ośrodkowy układ nerwowy zaproponowano pozostawienie obowiązującej wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh) na poziomie 250 mg/m³, co odpowiada wartości STEL przyjętej w SCOEL. Zaproponowano także wartość dopuszczalnego stężenia w materiale biologicznym (DSB) równą 7 mg 2-fenylo-2-propanolu/g kreatyniny w moczu (dla próbek poddanych hydrolizie i pobranych bezpośrednio po zakończeniu zmiany roboczej). Zalecono pozostawienie oznakowania związku literą „I” (substancja o działaniu drażniącym) oraz notą „skóra” (wchłanianie substancji przez skórę może być tak samo istotne, jak przy narażeniu drogą oddechową).
EN
Cumene is a clear, colourless liquid with a strong aromatic gasoline-like odour. Cumene is used for the synthesis of phenol and acetone and as a solvent in paints, varnishes and resins. It is also used in the printing and rubber industries. According to data from Polish Chief Sanitary Inspectorate, in 2010, no workers were occupationally exposed to cumene in concentrations exceeding Polish OEL values (100 mg/m3 ). In 2014, 51 workers were exposed to cumene in concentrations from 0.1 to 0.5 MAC value (from 10 mg/m3 to 50 mg/m3 ). Cumene vapours are irritating to the respiratory tract. In humans, high concentrations of cumene cause painful irritation to the eyes and the respiratory tract. In animals, cumene causes mainly CNS depression. Chronic exposure to cumene can cause hepatotoxicity. In vitro tests indicated no mutagenic and no genotoxic potential of cumene. Intraperitoneal injection of cumene induced micronuclei in bone marrow of rats. Dose-related increases in DNA damage were observed in liver cells of male rat and lung cells of female mouse. A metabolite of cumene, α-methylstyrene, was not mutagenic in bacterial tests but induced chromosomal damage in cell cultures and rodent cells. IARC experts classified cumene in group 2.B – chemicals possibly carcinogenic to humans based on sufficient evidence in experimental animals for the carcinogenicity of cumene. Exposure of mice to cumene by inhalation increased the incidence of alveolar/bronchiolar adenoma and carcinoma in males and females mice, haemangiosarcoma of the spleen in male mice and hepatocellular adenoma in female mice. Exposure of rats to cumene by inhalation increased the incidence of nasal adenoma in males and females and renal tubule adenoma and carcinoma in male rats. Cumene is well absorbed. It is a lipophilic substance which is well distributed in the whole body. Cytochrome P-450 is involved in cumene metabolism. Main metabolite identified in urine was 2-phenyl-2-propanol and in exhaled air α-methylstyrene. In 2014, Scientific Committee for Occupational Exposure Limits to Chemical Agents (SCOEL) prepared change of indicative OEL for cumene – reduction of concentration from 100 mg/m3 (directive 2000/39/WE) to 50 mg/m³, STEL value 250 mg/m3 remain unchanged. The compound was included in SCOEL carcinogenicity group D (not genotoxic and not affecting DNA chemicals), for which a health-based OEL may be derived on the basis of NOAEL value. Poland did not submit any comments on SCOEL proposal during public consultations in 2014. A new indicative OEL was derived on the basis of 3-month NTP inhalation studies in rats and mice. SCOEL established 310 mg/m³ (62.5 ppm) level as a NOAEC for hepatotoxicity. A STEL of 250 mg/m3 (50 ppm) have been recommended to protect against respiratory tract irritation and behavioural effects. Moreover, a “skin notation” was recommended because of its probable skin penetration. BLV recommended by SCOEL is 7 mg 2-phenyl-2-propanol per gramme of creatinine in urine (after hydrolysis). To determine MAC value for cumene hepatotoxicity and nephrotoxicity were adopted as a critical effect. The Expert Group for Chemicals Agents established 310 mg/m³ as NOAEC based on 3-month NTP inhalation studies in rats and proposed reduction of the current MAC value from 100 to 50 mg/m3 . It was agreed that the previous STEL value of 250 mg/m3 should remain unchanged, which is also in accordance with the value recommended by SCOEL. Recommended BEI value is 7 mg 2-phenyl-2-propanol per gramme of creatinine in urine (after hydrolysis), sampled immediately after work shift. It was recommended to remain “I” (irritant) and “Sk” (substance can penetrate skin) labelling of cumene.
PL
Octany butylu, czyli estry kwasu octowego i odpowiedniego alkoholu butylowego, to cztery związki chemiczne o identycznych sumarycznych wzorach cząsteczkowych, różniące się między sobą sposobami lub kolejnością wiązań atomowych. Są to octan n-butylu o prostym łańcuchu węglowym oraz jego 3 izomery: octan izobutylu, octan sec-butylu oraz octan tert-butylu. Przedmiotem niniejszego opracowania jest octan n-butylu oraz izomery: izo- i sec-, ponieważ charakteryzuje się podobnymi własnościami fizyczno-chemicznymi, szlakiem metabolicznym i krytycznym. Dla izomeru tert- opracowano oddzielną dokumentację. Octany: n-butylu, sec-butylu oraz izobutylu są bezbarwnymi, palnymi cieczami o owocowym zapachu. Są stosowane głównie jako rozpuszczalniki organiczne i składniki mieszanek rozpuszczalnikowych do: żywic, wosków, lakierów, perfum, tłuszczów, farb drukarskich, klejów i kamfory oraz w produkcji lakierów nitrocelulozowych. Według danych GIS liczba osób zatrudnionych na stanowiskach pracy w 2010 r., na których występowały octany butylu o stężeniach powyżej obowiązujących dotychczas wartości NDS , wynosiła sześć osób w przypadku octanu n-butylu, w tym dwie osoby pracowały przy produkcji metalowych wyrobów gotowych, z wyłączeniem maszyn i innych urządzeń oraz cztery osoby przy produkcji:pojazdów samochodowych, przyczep i naczep, z wyłączeniem motocykli.W2013 r. narażonych na octan n-butylu powyżej wartości dopuszczalnych było: jedna osoba przy produkcji skór i wyrobów ze skór wyprawionych, dziewięć osób przy produkcji: komputerów, wyrobów elektronicznych i optycznych oraz dwie osoby przy produkcji pozostałego sprzętu transportowego. W 2010 r. oraz 2013 r. nie zgłaszano narażenia na stężenia powyżej obowiązujących wartości NDS3dla octanu: sec-i izobutylu. Skutkiem krytycznym działania octanu n-butylu i jego izomerów, tj. octanu sec-butylu i izobutylu, jest działanie drażniące na błony śluzowe dróg oddechowych. Dla octanu n-butylu i izobutylu wyznaczono podobne wartości RD50, które wynoszą dla octanu n butylu 3470 mg/m3(730 ppm) oraz dla octanu izobutylu 3890 mg/m3(805 ppm). Dane dotyczące ostrej toksyczności inhalacyjnej są niespójne. Mediana stężenia śmiertelnego dla octanun-butylu mieści się w przedziale 750 ÷ 45 000 mg/m3/4 h (dla szczurów) i zależy od sposobu jego generacji. Wartości LD50 po podaniu do żołądkowym octanu n-butylu wynoszą około 14 130 mg/kg mc. dla szczura oraz 7100 mg/kg mc. dla myszy. Minimalna wartość LD50 octanu izobutylu wynosi 4800 mg/kg mc., natomiast w przypadku octanu sec-butylu wartośćLD50mieści się w granicach 3200 ÷ 6400 mg/kg mc. Octany: n-butylu, sec-butylu i izobutylu, są podobne pod względem: struktury, własności fizyczno- Większość danych ilościowych jest dostępnych wyłącznie dla octanu o prostym łańcuchu węglowym. Skutkiem krytycznym w przypadku octanu n-butylu i jego izomerów, tj. octanu sec-butylu i izobutylu, jest działanie drażniące na błony śluzowe dróg oddechowych. Według niektórych danych, siła działania drażniącego octanu n-butylu jest większa niż jego izomerów – octanu sec-i octanu izobutylu, jednak są one słabo udokumentowane i nieliczne, dlatego proponuje się ustalenie wartości najwyższego dopuszczalnego stężenia (NDS) jednakowej dla tych trzech substancji. Nie zostało u ludzi wyznaczone stężenie progowe działania drażniącego octanów: n-butylu, sec-butylu i izobutylu, natomiast obserwowano: słabe podrażnienie oczu, nosa, gardła, przełyku, wówczas gdy stężenie trwało 5 min. Z kolei, octan n-butylu o stężeniu 1449 mg/m3(300 ppm) u większości osób narażonych przez 2 ÷ 5 min spowodował podrażnienie: oczu, nosa i gardła.U ochotników narażanych przez 20 min na octan n-butylu, najwyższe stężenie, przy którym nie stwierdzono działania drażniącego na: oczy, nos, gardło, skórę i drogi oddechowe, wynosiło 1050 mg/m3(221 ppm),chociaż badaniu, znamienne różnice w porównaniu z grupą kontrolną obejmujące: podrażnienie gardła, trudności w oddychaniu, wyczuwanie nieprzyjemnego zapachu, obserwowano u narażonych na octan-butylu o stężeniu 700 mg/m3 przez 4 h. W większości państw przyjęto za wartość dopuszczalnego poziomu narażenia zawodowego na octany: n-butylu, sec-butylu oraz izobutylu, stężenie 480 lub 710 mg/m3((100 lub 150 ppm). W ACGIH zaproponowano w 2015 r. dla wszystkich czterech izomerów octanów butylu, tj. n-bu-tylu, sec-butylu, izobutylu i tert-butylu jedną wartość TLV-TWA na poziomie 240 mg/m3(50 ppm) oraz wartość chwilową STEL na poziomie 720 mg/m3(150 ppm).W SCOEL uznano: podobieństwa strukturalne, wspólny szlak metaboliczny oraz działanie drażniące na oczy, nos i gardło za skutek krytyczny jednakowy dla octanu n-butylu i jego dwóch izomerów, tj.octanu izobutylu i sec-butylu, co pozwala na rekomendację jednakowej wartości OEL dla wszystkich trzech octanów. W SCOEL (SUM/184/2013) zaproponowano wartość OEL dla wszystkich trzech octanów na poziomie 240 mg/m3(50 ppm) oraz wartość chwilową STEL na poziomie 720 mg/m3(150 ppm) na podstawie wyników badania Iregreni in. (1993), przyjmując stężenie 700 mg/m3 za wartość LOAEC dla działania drażniącego oraz współczynnik niepewności 3, ze względu na czas trwania eksperymentu (4 h).Na podstawie wyników badań na szczurach narażanych inhalacyjnie na octan n-butylu o stężeniach: 0; 2400; 7200 lub 14000 mg/m3(0; 500; 1500 lub 3000 ppm) przez 6 h/dzień, 5 dni/tydz. przez 13 ÷ 14 tygodni wyznaczono wartość NOAEC zarówno dla działania drażniącego, jak i układowe-go octanu n-butylu na poziomie 2400 mg/m3(500 ppm). Do wyliczenia wartości NDS dla octanów butylu za punkt wyjścia przyjęto wyniki badania na ochotnikach (Iregreni in.), w którym oceniano działanie drażniące i działanie na układ nerwowy tych związków. Przyjmując stężenie 700 mg/m3za wartość LOAEC dla działania drażniącego na błony śluzowe dróg oddechowych oraz odpowiednie współczynniki niepewności, zaproponowano wartość najwyższego dopuszczalnego stężenia (NDS) dla octanu: n-butylu, sec-butylu oraz izobutylu na poziomie 200 mg/m3. Ze względu na słabe działanie drażniące octanów butylu i możliwość występowania stężeń pikowych w środowisku pracy, zaproponowano także war-tość najwyższego dopuszczalnego stężenia chwilowego (NDSCh) na poziomie 3-krotnie większym niż wartość NDS, czyli 600 mg/m3. Po dyskusji i głosowaniu na 79. posiedzeniu Komisji Międzyresortowej Komisji ds. NDS i NDN (w dniu 3.07.2015 r.) dla octanu n-butylu i jego izomerów: octanu sec- i izobutylu przyjęto wartości zaproponowane w SCOEL, tj. NDS na poziomie 240 mg/m3oraz NDSCh na poziomie 720 mg/m3.Octan n-butylu nieznacznie wchłania się przez skórę(1,6 +/- 0,1 g/m2.h), dlatego nie zalecono oznakowania „skóra” – wchłanianie substancji przez skórę może być tak samo istotne, jak przy narażeniu drogą oddechową. Zalecono oznakowanie literą„I” – substancja o działaniu drażniącym.
EN
Butyl acetates, or acetic acid esters and a suitable butyl alcohol, are four compounds with identical molecular formulas which differ from each other by sequence of bonding of atoms. These are n-butyl acetate with a straight carbon chain and its three isomers: isobutyl acetate, sec-butyl and tert-butyl acetate. The subjects of this documentation are n-butyl acetate and isomers: sec-and iso-, because they have similar physical and chemical properties, route of metabolism and critical effect. Isomer tert- was described in separate documentation.n-Butyl, sec-butyl and isobutyl acetates are colorless, flammable liquids with a fruity odor. They are mainly used as organic solvents and as ingredients of solvent blends for resins, waxes, varnishes, perfumes, fats, inks, adhesives, camphors and in the production of nitrocellulose lacquer.The median lethal concentration for n-butyl acetate is in the range from 750 mg/m3/4h to 45 000 mg/m3/4h for rats and depends on the method of its generation. LD50values after intragastric administration of n-butyl acetate amounts to approx. 14 130 mg/kg for rat and 7100 mg/kg for mice. The minimum value of LD50 for isobutyl acetate is 4800 mg/kg. While in the case of sec-butyl acetate LD50value is within the range of 3200 ÷ 6400 mg/kg.Acetates cause irritation to mucous membranes oftherespiratory tract. For n-butyl acetate and isobutyl acetate RD50values are 3470 mg/m3and 3890 mg/m3, respectively.n-Butyl acetate, sec-butyl acetate and isobutyl properties and metabolic pathway. Most of the quantitative data are available only for acetate of straight carbon chain. Hence, it is proposed to establish an equal limit value for these three substances.In humans, weak irritation of eye, nose, throat, esophagus were observed in the concentration of n-butyl acetate of 1000 mg/m3at 5-min exposure. n-Butyl acetate at a concentration of 1449 mg/m3in most individuals exposed for 2 to 5 min caused irritation of eyes, nose and throat rated as sharp. In volunteers exposed for 20 min for n-butyl acetate, the highest concentration at which no irritation to eyes, nose, throat, skin, respiratory system were observed was of 1050 mg/m3. Although in the same study, significant diff-erences compared with the control group which include irritation to throat, difficulties in breathing, sensing odor were observed at a concentration of 700 mg/m3for 4h.SCOEL and ACGIH proposed TWA of 240 mg/m3and STEL at 720 mg/m3for all isomers of butyl acetates.To calculate the MAC value for butyl acetates The Expert Group adopted the study on volunteers as a starting point. Assuming that the concentration of 700 mg/m3is the LOAEC value for irritation on the mucous membranes of the respiratory tract and the respective uncertainties, The Expert Group proposed MAC--NDS for n-butyl, sec-butyl and isobutyl acetate of 200 mg/m3. Due to the mild irritant of butyl acetates and the possibility of ceiling concentrations in workplace, The Expert Group proposed STEL of 3 times higher than the MAC-NDS of 600 mg/m3.After discussion and voting, the Interdepartmental Commission for Maximum Admissible Concentration and Intensities for Agents Harmful to Health in the Working Environment at its 79th meeting adopted the MAC value of n-butyl acetate and its isomers sec-butyl and isobutyl proposed by SCOEL of 240 mg/m3and STEL value of 720 mg/m3.n-Butyl acetates are slightly absorbed through the skin (1.6 ± 0.1 g/m2 .h), hence it is not recommended to label them as ”skin” (absorption of substances through the skin can be just as important as for inhalation). It is recommended to label this substance as ”I” (irritant).
PL
Cyklofosfamid ma postać białego, drobnego, bezwonnego proszku (monohydrat), który pozbawiony wody krystalizacyjnej ma postać oleistej, półpłynnej substancji ciemniejącej pod wpływem światła. Cyklofosfamid działa cytostatycznie i immunosupresyjnie. Stosowany jest w leczeniu: ziarnicy złośliwej, chłoniaków złośliwych, szpiczaka mnogiego, przewlekłej białaczki limfatycznej, raka jajnika, nieoperacyjnego raka sutka oraz nabłoniaka oskrzeli. Jako środek immunosupresyjny cyklofosfamid jest stosowany w leczeniu: zespołu nerczycowego, liszaja rumieniowatego, reumatoidalnego zapalenia stawów, niedokrwistości immunohemolitycznych oraz podczas transplantacji nerek i szpiku. Lek podaje się doustnie w postaci tabletek lub drażetek oraz pozajelitowo po rozpuszczeniu substancji ex tempore w wodzie do wstrzykiwań. Stosuje się go również do perfuzji narządów, w których rozwija się nowotwór. Stosowany jest zarówno pojedynczo, jak i (najczęściej) w połączeniu z innymi lekami przeciwnowotworowymi. Podczas produkcji cyklofosfamidu głównymi drogami narażenia zawodowego są układ oddechowy i skóra. Skóra jest główną drogą narażenia personelu medycznego na cyklofosfamid, dlatego większość danych o poziomach narażenia w szpitalach dotyczy stężeń związku na powierzchni stołów, na których są przygotowywane preparaty dla pacjentów, a także obserwowanych stężeń cyklofosfamidu na skórze i w moczu personelu. Brak jest danych na temat zawodowego narażenia podczas produkcji cyklofosfamidu w Polsce. Nie ma informacji o tym, że cyklofosfamid jest w Polsce produkowany. Zgodnie z danymi, nadesłanymi przez zakłady pracy do Centralnego Rejestru Danych o Narażeniu na Substancje Chemiczne, ich Mieszaniny, Czynniki lub Procesy technologiczne o Działaniu Rakotwórczym w Łodzi, na cyklofosfamid było narażonych zawodowo w Polsce 1476 osób w 2001 r. Według raportu Krajowego Konsultanta w dziedzinie pielęgniarstwa onkologicznego w 2010 r. (dane niepełne, obejmujące jedynie 12 województw) liczba pielęgniarek w placówkach onkologicznych wynosiła łącznie 5077. Wartość LD50 po podaniu per os cyklofosfamidu szczurom wynosi 180 mg/kg mc., a w przypadku myszy 137 mg/kg mc. Leukopenia była głównym skutkiem działania cyklofosfamidu na układ krwiotwórczy u: myszy, szczurów i psów. Stwierdzono również zahamowanie czynności szpiku kostnego i spadek liczby płytek krwi. Związek u: myszy, szczurów i psów, powodował: martwicę pęcherza oraz nabłonka kanalików i miedniczek nerkowych, a umiarkowane uszkodzenia obserwowano również w wątrobie. Dane dotyczące działania toksycznego cyklofosfamidu na ludzi pochodzą od pacjentów leczonych tym związkiem. Cyklofosfamid u ludzi w warunkach narażenia ostrego powodował: uszkodzenie szpiku kostnego, krwotoczne zapalenie pęcherza, a także kardiomiopatię. Kardiotoksyczność wywoływana przez cyklofosfamid objawia się w szerokim zakresie – od małych zmian w ciśnieniu krwi, przez zmiany w EKG i niemiarowość do wtórnej kardiomiopatii ze zmniejszoną frakcją wyrzutową lewej komory (LVEF) i niewydolnością serca, zakończoną śmiercią, w bardzo rzadkich przypadkach. Najczęstszym skutkiem ubocznym terapii cyklofosfamidem chorób autoimmunologicznych (np. układowego tocznia rumieniowatego, artretyzmu reumatoidalnego, ziarniniaka Wegenera, chłoniaków nieziarniczych) jest działanie toksyczne na pęcherz moczowy. Zapadalność pacjentów na krwotoczne zapalenie pęcherza jest rzędu 12 ÷ 41% i skutek ten występował u pacjentów, którzy otrzymywali ponad 100 g leku doustnie w ciągu ponad 30 miesięcy. Za toksyczne działanie cyklofosfamidu na pęcherz jest odpowiedzialna akroleina, będąca jego metabolitem, natomiast przy dożylnym podawaniu leku zapalenie pęcherza jest niezwykle rzadkie. Innymi objawami stwierdzanymi u pacjentów otrzymujących cyklofosfamid były: retencja sodu i wody, zwłóknienie płuc, zaburzenia widzenia, pigmentacja paznokci, jednakże jego rola w tych przypadkach nie została wyjaśniona. Genotoksyczność cyklofosfamidu potwierdzono w wielu badaniach, prowadzonych w warunkach in vivo oraz in vitro na hodowlanych modelach zwierzęcych. Przeprowadzono znaczną liczbę badań właściwości cytogenetycznych cyklofosfamidu na: traszkach, gryzoniach, psach i naczelnych, uzyskując niezmiennie dodatnie wyniki. W wielu doniesieniach opisano tworzenie adduktów DNA u ludzi pod wpływem działania cyklofosfamidu. Międzynarodowa Agencja Badań nad Rakiem (IARC) uznała, że są wystarczające dowody na działanie rakotwórcze cyklofosfamidu na ludzi. Cyklofosfamid wywołuje u ludzi raka pęcherza i ostrą białaczkę szpikową. Uznano również, że są wystarczające dowody działania rakotwórczego tego związku na zwierzęta doświadczalne i sklasyfikowano cyklofosfamid jako Cyklofosfamid. Dokumentacja proponowanych dopuszczalnych wielkości narażenia zawodowego związek rakotwórczy dla ludzi (Grupa 1.). W Unii Europejskiej cyklofosfamid został zaklasyfikowany jako substancja rakotwórcza kategorii 1.A i mutagenna kategorii 2.B. Cyklofosfamid wpływa na rozrodczość u ludzi zarówno w okresie leczenia, jak i przez krótki czas po jego zakończeniu. Związek ten powoduje u ludzi zaburzenia płodności i zaburzenia miesiączkowania. Cyklofosfamid jest teratogenny dla wielu gatunków zwierząt, m.in. dla: szczurów, myszy, królików i naczelnych. Jest odpowiedzialny za: zniekształcenia i deformacje w układzie kostnym, tkankach miękkich oraz zwiększoną liczbę resorpcji, a rodzaj i częstość deformacji są ściśle zależne od czasu i wielkości dawki. Cyklofosfamid działa szkodliwe na zarodki i prowadzi do poronień. Narażenie na cyklofosfamid w pierwszym trymestrze ciąży może powodować takie liczne wady rozwojowe płodu, jak: uszkodzenia kośćca i podniebienia oraz zniekształcenia kończyn. Cyklofosfamid wchłania się: drogą inhalacyjną, z przewodu pokarmowego, z jamy otrzewnej i przez skórę. W przypadku narażenia zawodowego personelu medycznego skóra uważana jest za główną drogę wchłaniania. Zarówno w Polsce, jak i w innych państwach nie ustalono dotychczas wartości najwyższego dopuszczalnego stężenia (NDS) cyklofosfamidu w powietrzu na stanowiskach pracy ani wartości dopuszczalnego stężenia w materiale biologicznym (DSB) dla narażenia zawodowego. Za podstawę do wyprowadzenia wartości NDS przyjęto działanie rakotwórcze cyklofosfamidu na zwierzęta. Wykorzystano współczynnik nachylenia krzywej dawka-odpowiedź na poziomie 0,57 mg/kg mc./dzień dla nowotworów pęcherza obliczony na podstawie wyników całożyciowego narażenia szczurów na cyklofosfamid drogą pokarmową. Średnia dawka całożyciowa dla ryzyka 10-4 wynosi 1,754 - 10-4 mg/kg mc./dzień, co w warunkach narażenia zawodowego odpowiada stężeniu w powietrzu 0,01 mg/m3 i taką wartość postanowiono zaproponować jako wartość NDS. Wartość NDS cyklofosfamidu w obliczonej wysokości powinna chronić pracowników również przed białaczką i działaniem na rozrodczość. Zaproponowano również przyjęcie wartości dopuszczalnego stężenia w materiale biologicznym (DSB) w wysokości 1 μg cyklofosfamidu w całodobowej zbiórce moczu. Brak jest podstaw merytorycznych do ustalenia wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh). Zaproponowano dla cyklofosfamidu zastosowanie następującego oznakowania: Carc. 1A – substancja rakotwórcza kategorii 1.A, „skóra” – wchłanianie substancji przez skórę może być podobnie istotne, jak przy narażeniu drogą oddechową oraz oznakowanie literami „Ft” – substancja działająca szkodliwie na płód.
EN
Cyclophosphamide (monohydrate) is a fine white crystalline odorless powder The substance liquefies and becomes an oily semisolid mass when water is removed. It darkens on exposure to light. Cyclophosphamide an antineoplastic and immunosuppressant agent. It is used to treat malignant lymphoma, multiple myeloma, leukemia, breast and ovarian cancer, neuroblastoma and malignat neoplasms of the lung. Cyclophosphamide is also used as an immunosuppressive agent to treat autoimmune disorders such as rheumatoid arthritis, psoriatic arthritis and nephrotic syndrome (a kidney disorder) in children. It is increasingly being used as an inmunosuppressive agent following organ (kidney, bone marrow) transplantation. The drug may be administered orally in the form of tablets or intravenously following dissolution ex tempore in aqua for injections. It may also be used for perfusion of cancer-affected organs. In chemotherapy, it may be used alone, but more frequently is used concurrently or sequentially with other anticancer drugs. During manufacture of cyclophosphamide, skin and the respiratory system are the main routes of exposure. Since skin is the most important route of exposure of medical personnel, most of the reported exposure data include surface concentration of the compound in locations where the drug is prepared for treatment and cyclophosphamide concentration on the skin and in urine of the personnel. No data on occupational exposure during production of cyclophosphamide in Poland are available. It is not known whether cyclophosphamide is manufactured in Poland. According to the information in the Central Register of Exposure to Cancerogenic Compounds, Mixtures and Technological Processes, 1476 persons were occupationally exposed to cyclophosphamide in 2001 in Poland. In 2010, there were 5077 oncological nurses (incomplete data, 12 out of 16 voivodships). Oral LD50 for cyclophoshamide was 180 mg/kg bw for rats and 137 mg/kg bw for mice. In mice, rats and dogs the predominant haematologic effect was leucopaenia. Depression in bone marrow and thrombocytes was also reported. Cyclophosphamide causes a marked necrosis of the bladder and of the tubular and pelvic epithelium in mice, rats and dogs; moderate damage in liver was also observed. Toxicity data for humans are derived mostly from findings in patients treated with cyclophosphamide. The predominant haematological effect of cyclophosphamide is leucopaenia. Acute toxicity of cyclophosphamide may lead to bone marrow damage, hemorrhagic cystitis and cardiomyopathy. Cyclophosphamide induced cardiotoxicity may be pronounced as changes in blood pressure, abnormal EKG, arhythmia leading to secondary cardiomyopathy with lowered left ventricular ejection fraction (LVEF) and heart failure leading in isolated cases even to death. The most frequent side effect of treatment of autoimmune inflammatory diseases (e.g., systemic lupus erythematosus, systemic vasculitis, scleroderma, rheumatoid arthritis, Wegener's granulomatosis) is toxicity to the urinary bladder. Incidence of hemorrhagic cystitis was in the range 12 – 41% in patients receiving orally more than 100 g of the drug over 30 months and more. The bladder toxicity of cyclophosphamide is caused by the formation of acrolein, which is its metabolite; hemorrhagic cystitis is, however, extremely rare following intravenous administration. Another symptoms in cyclophosphamide-treated patients are sodium and water retention, pulmonary fibrosis, visual blurring, nail pigmentation but the causative role of cyclophosphamide in these effects is, however, not well established. Genotoxicity of cyclophosphamide has been confirmed in many tests in vivo, in vitro and on cultured animal models. Many studies have investigated the cytogenicity of cyclophosphamide in newts, rodents, dogs and non-human primates giving consistently positive results. There are numerous reports of DNA-adduct formation by cyclophosphamide in humans. The International Agency for Research on Cancer (IARC) has announced that there is sufficient evidence in humans for the carcinogenicity of cyclophosphamide. Cyclophosphamide causes cancer of the bladder and acute myeloid leukemia. There is also sufficient evidence in laboratory animals for the carcinogenicity of cyclophosphamide. Cyclophosphamide has been classified as carcinogenic to humans (Group 1). In the European Union, cyclophosphamide has been classified as carcinogenic category 1.A and mutagenic category 2.B. Cyclophosphamide has an influence on reproducibility in humans both during treatment and immediately afterwards. It causes fertility impairment and menstrual disorders. Cyclophosphamide is teratogenic to many animal species including rats, mice, rabbits and primates. It is responsible for a variety of musculoskeletal and other malformations and an increased number of resorptions, The type and frequency of malformations are strictly dose- and time-dependent. It is harmful to embryos and may lead to abortions. Exposure to cyclophosphamide in the first trimester of pregnancy may cause numerous congenital anomalies in fetuses, musculoskeletal malformations and deformations of limbs. Cyclophosphamide may be absorbed by inhalation, ingestion, from skin contact or from peritoneum. In the case of occupational exposure of health professionals, skin is considered the main route of exposure. Both in Poland and in other countries, neither occupational exposure level (OEL) in workplace air nor biological exposure index (BEI) has been established for occupational exposure to cyclophosphamide. The proposed OEL value for cyclophosphamide has been derived from its carcinogenicity to laboratory animals, namely from a cancer slope factor (CSF) of 0.57 (mg/kg/day)–1 for bladder cancer, calculated from lifetime oral exposure of rats. The mean dose for 1 10-4 excess lifetime cancer risk would be 1.754 10-4 (mg/kg/day)–1, which in the condition of occupational inhalation exposure is equivalent to air concentration 0.01 mg/m3 and this value is proposed as Time Weighted Average (TWA) OEL. The proposed OEL should protect employees against leukemia and reproductive toxicity, too. The proposed biological exposure index (BEI) is 1 μg of cyclophosphamide in a 24-hr urine sample. There are no grounds for establishing short-term exposure limit (STEL).
PL
2-Etyloheksan-1-ol jest bezbarwną cieczą o słodkim smaku i lekkim, kwiatowym zapachu, przypominającym zapach róży. Związek jest alkoholem alifatycznym, ważnym półproduktem do produkcji małolotnych estrów organicznych, np. ftalanu di(2-etyloheksylu), (DEHP), stosowanych jako plastyfikatory, głównie do zmiękczania PCW Jest także stosowany jako: rozcieńczalnik, dodatek do mieszanki paliwowej silników diesla oraz do olejów smarowych, w pralniach do czyszczenia „na sucho”, przy produkcji nitro-celulozy, papieru i gumy, w przemyśle tekstylnym i spożywczym. Do środowiska przedostaje się z tworzyw sztucznych, w których ftalan di(2-etyloheksylu) został zastosowany jako plastyfikator, w tym głównie z: materiałów budowlanych i wykładzin podłogowych, ale także z innego sprzętu, np. z obudowy komputerów. 2-Etyloheksan-1-ol jest uznawany za jeden z czynników przyczynowych tzw. zespołu chorego budynku (SBS,sick building syndrome). W warunkach narażenia zawodowego 2-etylo-heksan-1-ol wchłania siędo organizmu głównie przez drogi oddechowe. Na podstawie wyników badań na zwierzętach wykazano możliwość wchłaniania związku także przez skórę, choć w znacznie mniejszym stopniu. W dostępnym piśmiennictwie i w bazach danych nie ma doniesień o ostrych zatruciach ludzi 2-etyloheksan-1-olem, co wynika z niewielkiej toksyczności ostrej tej substancji. Na podstawie wyników przeprowadzonych w ostatnim dziesięcioleciu badań na ochotnikach dotyczących skutków chemosensorycznych na-rażenia na 2-etyloheksan-1-ol w warunkach narażenia drogą oddechową wykazano, że działanie drażniące 2-etyloheksan-1-olu na ludzi występuje już przy znacznie mniejszych stężeniach niż wynikało to z wyników badań na zwierzętach. U ochotników w warunkach narażenia na 2-etyloheksan-1-ol o stałym stężeniu podczas 4 h, przy stężeniu wynoszącym57,6 mg/m3wskaźniki podrażnienia błon śluzowych jamy nosowej i oczu w skali LMS określono jako „umiarkowane”. Należy jednocześnie podkreślić, że w przypadku narażenia na substancję o sinusoidalnie zmiennym stężeniu (przy średnim stężeniu na tym samym poziomie) obserwowano dodatkowo wzrost stężenia substancji P– neuropeptydu, uznanego za wskaźnik zapalenia neurogennego spowodowanego podrażnieniem nerwu trójdzielnego w popłuczynach nosowych, a także zmniejszenie przepływu powietrza przez istotny wzrost częstości mrugania powiekami. Wszystkie te wymienione parametry wskazują na działanie drażniące badanej substancji. Objawy kliniczne ostrego narażenia zwierząt na 2-etyloheksan-1-ol obejmują: apatię, brak koordynacji ruchów, chwiejny chód, depresję ośrodkowego układu nerwowego i trudności z oddychaniem. Stężenie 2-etyloheksan-1-olu powodujące u myszy zmniejszenie częstości oddechów o 50% (RD50) wynosi 238 mg/m3. W warunkach narażenia przedłużonego i podprzewlekłego zwierząt na 2-etyloheksan-1-ol narządami krytycznymi były wątroba i nerki. 2-Etyloheksan-1-ol jest szybko wydalany z organizmu w postaci metabolitów przede wszystkim z moczem. 2-Etyloheksan-1-ol w badaniach na zwierzętach doświadczalnych nie wykazywał działania: mutagennego, rakotwórczego ani działania szkodliwego na rozrodczość. Na podstawie wyników badania na ochotnikach wykazano, że krytycznym skutkiem narażenia na 2-etyloheksan-1-ol jest działanie drażniące. Eksperci SCOEL zaproponowali wartość OEL dla 2-etyloheksan-1-olu znacznie mniejszą od wartości dopuszczalnych stężeń ustalonych w poszczególnych państwach. Podstawą były badania przeprowadzone na ochotnikach. W SCOEL stężenie 8,1 mg/m3(1,5 ppm) przyjęto za wartość NOAEL dla działania drażniącego 2-etyloheksan-1-olu, a wartość OEL ustalono na poziomie 5,42 mg/m3(1 ppm).Przyjęto stężenie 57,6 mg/m3za wartość LOAEC dla działania drażniącego związku, biorąc pod uwagę wyniki badań4-godzinnego narażenia inhalacyjnego ochotników na 2-etyloheksan-1-ol. Po uwzględnieniu współczynników niepewności uzyskano wartość najwyższego dopuszczalnego stężenia (NDS) dla 2-etyloheksan-1-olu wynoszą-cą4,8 mg/m3. Zaproponowano przyjęcie wartości NDS 2-etyloheksan-1-olu na poziomie zapro-ponowanym w SCOEL w 2011 r., tj. 5,4 mg/m3. W celu zabezpieczenia pracowników przed narażeniem na pikowe stężenia 2-etyloheksan-1-olu, zaproponowano ustalenie wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh) na poziomie 2 razy wartość NDS, czyli 10,8 mg/m3. Nie ma podstaw merytorycznych do ustalenia dla 2-etyloheksan-1-olu dopuszczalnego stężenia w materiale biologicznym (DSB). Ze względu na działanie drażniące oznakowano substancję symbolem „I”.
EN
2-Ethylhexan-1-ol is a colorless liquid with sweet taste and light, floral, rose-like odour. This aliphatic alcohol is an important intermediate for synthesis of low-volatile esters, e.g., di(2-ethylhexyl) phthalate (DEHP), used as plasticizers mainly as PVC softeners. 2-Ethylhexan-1-ol is also used as a solvent, an additive to diesel fuels and lubricating oils, in laundries for dry cleaning, in the production of nitrocellulose, paper and rubber, in the textile and food industry. 2-Ethylhexan-1-ol is emitted to the environment from plastics, mainly from building materials and floor coverings, but also from other equipment, e.g., computer cases. This substance is considered as one of so-called sick building syndrome (SBS) causes.In the working environment, 2-ethylhexan-1-ol is absorbed into the body mainly by inhalation. Animal studies indicate also the possibility of dermal absorption but to a much less extent than by inhalation. There are no reports on acute human poisoning due to low acute toxicity of this substance. According to results of human acute studies on chemosensory effects after inhalation exposure, sensory irritation occurs at much lower concentrations than it was considered on the basis of animal studies. “Moderate” (LMS scale) irritation of eyes and nose was detected in human volunteers after 4-h inhalation of 2-ethylhexanol at the constant concentration of 57.6 mg/m3. Exposure to sinusoidally variable concentrations over 4 h (mean concentration was also 57.6 mg/m3)caused theincrease of concentration of the substance P, which is a neuropeptide indicating nasal chemosensory irritation, in nasal lavage, decrease of nasal flow and increase of eye blinks. All of the mentioned parameters indicate the irritation properties of 2-ethylhexan-1-ol.Clinical effects of acute exposure of animals are apathy, incoordination, ataxia, depression of central nervous system and breathing difficulties. In mice, decrease of respiratory rate of 50% was observed at concentration 238 mg/m3of 2-ethylhexanol(RD50). Critical organs in subacute or long-term exposure are liver and kidney. 2-Ethylhexan-1-ol is rapidly eliminated from the body as metabolites, mainly in the urine. There were no carcinogenicity, mutagenicity and reprotoxicity observed in animals.The result of inhalation experiment with human volunteers showed that the critical effect of 2ethylhexanol is irritation. The Scientific Committee on Occupational Exposure Limits (SCOEL) proposed much smaller occupational exposure limit (OEL) than occupational exposure limits in particular countries. SCOEL established concentration of 8.1 mg/m3(1.5ppm) for NOAEC and 5.42 mg/m3(1 ppm) for OEL.On the based of 4-h inhalation experiment on human volunteers the 2-ethylhexanol concentration of 57.6 mg/m3was established as LOAEC. On the basis of this LOAEC value, after taking into account uncertainty factors, the MAC (TWA) value of 4.8 mg/m3was established. The value of 5.4 mg/m3proposed by SCOEL was recommended as MAC (TWA). To protect workers from peak exposure to 2-ethylhexane-1-ol, STEL value of 10.8 mg/m3(2 x MAC) was recommended. Due to irritation properties of 2-ethyhexan-1-ol it was recommended to label the substance with symbol “I”.
PL
1,4-Dichlorobenzen jest ciałem stałym o budowie krystalicznej, bezbarwnym lub białym, o zapachu kamfory, ulegającym sublimacji. Jest stosowany jako insektycyd (głównie w środkach przeciwmolowych), fumigant, a także jako składnik środków dezodoryzujących stosowanych do pomieszczeń oraz odświeżaczy stosowanych w kontenerach na śmieci. W syntezie chemicznej jest stosowany do produkcji siarczku polifenylenu, 1,2,4 trichlorobenzenu, 2,5-dichloroaniliny oraz wielu barwników. Ma również zastosowanie w przemyśle farmaceutycznym. W warunkach narażenia zawodowego 1,4-di-chlorobenzenwchłania się do organizmu głównie przez drogi oddechowe. Ma niewielką toksyczność ostrą. Skutki działania przewlekłego na ludzi obejmują: działanie drażniące na oczy i błony śluzowe górnych dróg oddechowych, pogorszenie parametrów funkcji płuc, zaburzenia funkcji nerek i wątroby. W badaniach na zwierzętach w warunkach narażenia przedłużonego i przewlekłego na 1,4-dichlorobenzen per os zmiany obserwowano głównie w wątrobie oraz u szczurów samców w nerkach. Skutkiem krytycznym przewlekłego narażenia na 1,4-dichlorobenzen drogą inhalacyjną było działanie drażniące objawiające się zmianami w nabłonku jamy nosowej. Nie wykazano istotnego potencjału genotoksycznego 1,4-dichlorobenzenu. W badaniach mutagenności zarówno w warunkach in vitro, jak i in vivo, w większości eksperymentów uzyskano wyniki ujemne. Stwierdzono działanie rakotwórcze 1,4-di-chlorobenzenu na zwierzęta. Po podaniu dożołądkowym u myszy obu płci obserwowano głównie nowotwory wątroby, a u szczurów samców – gruczolakoraki kanalików nerkowych. Za powstawanie nowotworów nerek u szczurów samców narażonych na 1,4-dichlorobenzen jest odpowiedzialny specyficzny niegenotoksyczny mechanizm, nieistotny w przypadku ludzi. Najbardziej istotnymi zmianami nowotworowymi u myszy obu płci stwierdzonymi w wyniku eksperymentu inhalacyjnego były nowotwory wątroby (raki i gruczolaki wątrobowo komórkowe, mięsaki histiocytarne wątroby). Mechanizm powstawania u myszy nowotworów wątroby po podaniu 1,4 dichlorobenzenu drogą pokarmową lub inhalacyjną nie jest dokładnie wyjaśniony, ale na podstawie wyników badań wykazano progowy charakter tego skutku.W badaniach dwupokoleniowych na szczurach narażanych na 1,4-dichlorobenzen per os lub drogą inhalacyjną nie stwierdzono jego wpływu na funkcje rozrodcze zwierząt. 1,4-Dichlorobenzen nie działałem briotoksycznie, fetotoksycznie ani teratogennie. Dla 1,4-dichlorobenzenu zaproponowano wartość NDS wyprowadzoną z wartości NOAEL 10 mg/kg mc./dzień uzyskaną w badaniach na psach, którym związek podawano per os(w kapsułkach) przez 52 tygodnie. Skutkiem krytycznym było działanie hepatotoksyczne substancji. Po uwzględnieniu współczynników niepewności zaproponowano wartość NDS na poziomie 12 mg/m3. Z uwagi na występowanie stężeń pikowych 1,4-dichlorobenzenu w środowisku pracy oraz działanie drażniące zaproponowano ustalenie wartości najwyższego dopuszczalnego stężenia chwilowego (NDSCh) na poziomie 3 razy NDS, czyli 36 mg/m3 Brak jest ilościowych danych dotyczących wchłaniana 1,4-dichlorobenzenu przez skórę, ale na podstawie wyników modelowania oceniono, że wchłanianie substancji przez skórę może być tak samo istotne, jak przy narażeniu drogą oddechową, dlatego zaproponowano notację„skóra”. Ze względu na działanie drażniące zaproponowano również notację„I”. Dostępne dane nie są wystarczające do ustalenia wartości dopuszczalnej w materiale biologicznym (DSB).
EN
1,4-Dichlorobenzene is a solid crystalline substance, colorless or white, with camphor-like odour. It sublimes at room temperature. It is used as insecticide (mainly in the mothballs), as a fumigant and as a component of indoor deodorants and air-fresheners used in dumpsters. 1,4-Dichlorobenzene is used in the synthesis of polyphenylene sul fide,1,2,4trichlorobenzene, 2,5-dichloroaniline and dyes. It is also used in pharmaceutical industry.1,4-Dichlorobenzene is absorbed into the body mainly by inhalation. It has low acute toxicity. Chronic effects in humans include irritation to eyes and mucous membranes of the upper respiratory tract, impaired lung function parameters, impaired kidney and liver function.In prolonged and chronic animal studies changes were observed mainly in a liver. In male rats changes were also observed in kidneys. After chronic exposure to 1,4-dichlorobenzene, changes due to irritation were observed in epithelium of the nasal cavity.1,4-Dichlorobenzene has no significant genotoxic potential. Most in vitro and in vivo mutagenicity studies were negative.1,4-Dichlorobenzene was carcinogenic to animals. Liver tumors were observed in the male and female mice after oral administration of 1,4-dichlorobenzene and after inhalation. The mechanism of liver tumor in mice after administration of 1,4-dichlorobenzene by ingestion or inhalation is not exactly clear but studies indicate the threshold nature of this effect. Adenocarcinomas of the renal tubule were observed in male rats after oral administration of 1,4-dichlorobenzene. Specific genotoxic mechanism, irrelevant for humans, is responsible for kidney tumors in male rats exposed to 1,4-dichlorobenzene.1,4-Dichlorobenzene is not embryotoxic, teratogenic or fetotoxic. There was no impact on reproductive functions of animals in the two-generation study in rats exposed to 1,4-dichlorobenzene by ingestion or by inhalation.A critical effect for exposure to 1,4-dichlorobenzene is hepatotoxic activity. Oral administration of 1,4-dichlorobenzene (in capsules) in dogs for 52 weeks caused changes in liver and NOAEL value obtained from this study was 10 mg/kg/day. On the basis of this NOAEL value, after taking into account uncertainty factors, the MAC (TWA) value of 12 mg/m3and STEL of 36 mg/m3(3 times NDS) were recommended.There is no quantitative experimental data on skin absorption of 1,4-dichlorobenzene, but on the basis of modeling data the “Skin” notation was added because absorption of substances through the skin can be as important as inhalation. It is recommended to label the substance with symbol “I” (irritant).
first rewind previous Strona / 3 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.