Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 153

Liczba wyników na stronie
first rewind previous Strona / 8 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  tissue engineering
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 8 next fast forward last
PL
Dokonano literaturowego przeglądu dotyczącego zastosowania mezoporowatego szkła krzemionkowo-wapniowo-fosforanowego jako biomateriału stosowanego w leczeniu chorób tkanki kostnej. Mezoporowate bioaktywne szkła mogą pełnić funkcję szkieletową i podpórkową dla powstających tkanek oraz służyć jako nośniki substancji leczniczych, jonów metali czy czynników wzrostu stosowanych w regeneracji tkanki kostnej. Unikatowe właściwości fizykochemiczne oraz biologiczne, takie jak rozwinięta powierzchnia oraz biokompatybilność sprawiają, że materiały te stosowane są w inżynierii tkankowej.
EN
A review, with 21 refs., of use of mesoporous SiO₂-CaO-P₂O₅ glasses as the biomaterials for bone tissue regeneration. They not only play a skeletal and supporting role for tissues but also are as carriers for drugs and metal ions as well as growth factors in the process for tissue regeneration. Unique phys., chem. and biol. properties (large surface and biocompatibility) make the materials useful in tissue engineering.
EN
In this article novel technological solutions for applying additive manufacturing technologies in the biomedical and biotechnological industry are showcased. The BioCloner Desktop (referred to as ‘Desktop’) is a miniaturised version of an industrial printer developed as part of a project regarding utilising additive manufacturing technologies for manufacturing of bioresorbable implants. In the years 2016-2019, the project was financed from EU resources (project number POIR.01.01.01-00-0044/16-00). During this project, industrial-sized solutions dedicated for medical and pharmaceutical applications were developed. The Desktop was developed as a way of expanding the possibilities of research and development in a standard biomedical laboratory. The size of the described printer allows it to be placed inside a laminar flow cabinet. The Desktop is a device which meets the growing need for multipurpose compact desktop bioprinters dedicated for research and development applications. Currently, commercially available laboratory-scale machines lack an open architecture, which puts boundaries on research. Miniaturisation of the BioCloner bioprinter did not sacrifice its key feature of supporting multitool print and convenience of construction for further specialisation. The BioCloner project, besides bioprinters, also includes dedicated slicing and printer control software. Thanks to its multiplatform compatibility, it is possible to easily increase the scale of production directly after the research process. The Desktop is equipped with printheads that facilitate multiple methods of 3D printing. From the most popular fused filament fabrication (FFF) to the versatile fused granulate fabrication (FGF) to highly specialised printheads for bioprinting, designed to dispense hydrogels via pressure extrusion. The printheads have also additional features required in the bioprinting process, such as UV crosslinking lights and temperature control (heating as well as cooling). In this article, key features of both the BioCloner Desktop bioprinter and the dedicated BioCloner 3D slicing-operating software are outlined. Its second part is a report on the bioprinter’s usage in the Biomedical Engineering Laboratory, named after E.J. Brzeziński, located at Faculty of Mechanical and Industrial Engineering of Warsaw University of Technology. During the study, hydrogel cell scaffolds for culturing WEHI-164 mouse fibroblasts were produced. The structures were obtained using a gelatin methacrylate (GelMa)-based commercially available bioink deposited directly into a cell culture vessel. The structures were fully crosslinked immediately after printing. All printed scaffolds supported cell proliferation. There were no observed signs of contamination, and the conducted field tests confirmed the assumed functionality of the BioCloner Desktop bioprinter.
PL
W artykule przedstawiono nowatorskie rozwiązania techniczne pozwalające na wykorzystanie technologii addytywnego wytwarzania w branżach biomedycznej i biotechnologicznej. BioCloner Desktop (dalej: „Desktop”) jest zminiaturyzowanym rozwiązaniem opracowanym w ramach trwającego od 2016 r. projektu BioCloner, mającego na celu wdrożenie technik przyrostowych w procesie produkcji implantów wchłanialnych. Projekt ten w latach 2016-2019 był finansowany ze środków UE (projekt POIR.01.01.01-00-0044/16-00 - Pierwsza polska biodrukarka dedykowana do implantów wchłanialnych - BioCloner). W ramach projektu BioCloner opracowano rozwiązania wielkogabarytowe przeznaczone do zastosowania w branży medycznej i farmaceutycznej. Desktop został opracowany z myślą o poszerzeniu możliwości prac badawczo-rozwojowych w typowym laboratorium biomedycznym. Wymiary drukarki BioCloner Desktop pozwalają na pracę w warunkach podwyższonej czystości oraz wewnątrz komory laminarnej. Desktop stanowi odpowiedź na rosnące wymagania stawiane przed kompaktowymi drukarkami nabiurkowymi wykorzystywanymi w pracach badawczo-rozwojowych. Dostępne na rynku urządzenia przeznaczone do biodruku w skali laboratoryjnej nie posiadają otwartej architektury, przez co ograniczają zakres prowadzonych prac badawczo-rozwojowych. Przy zmniejszeniu biodrukarki 3D zachowano wyróżniające BioCloner cechy - wsparcie druku wielogłowicowego oraz otwartość konstrukcji, która pozwala na rozwijanie kompatybilnych głowic i akcesoriów wspierających proces biodrukowania 3D. Projekt BioCloner poza wymienionymi biodrukarkami 3D obejmuje również dedykowane oprogramowanie sterujące zawierające kluczowe z perspektywy biodruku funkcjonalności. Dzięki międzyplatformowej kompatybilności sterowników możliwe będzie szybkie zwiększenie skali produkcji po zakończeniu prac badawczo-rozwojowych. Desktop jest wyposażony w głowice wspierające różne metody druku przestrzennego. Od najpopularniejszego druku termoplastycznym filamentem fused filament fabrication (FFF), poprzez druk wykorzystujący nadtopiony granulat fused granulate fabrication (FGF), po głowice ciśnieniowe opracowane specjalnie do wymagań stawianych przez biodruk. Przykładem tego są głowice przeznaczone do ekstruzji ciśnieniowej hydrożeli z wieloma dodatkowymi funkcjami, takimi jak sieciowanie UV oraz kontrola temperatury (zarówno grzanie, jak i chłodzenie). Opisywana w artykule drukarka została przetestowana w Laboratorium Inżynierii Biomedycznej im. E.J. Brzezińskiego mieszczącym się na Wydziale Mechanicznym Technologicznym Politechniki Warszawskiej. Wytworzono w nim rusztowania do hodowli fibroblastów mysich WEHI-164. Struktury zostały wydrukowane z hydrożelu bazującego na metakrylowanej żelatynie (GelMa), bezpośrednio w naczyniu przeznaczonym do dalszej inkubacji hodowli. Wszystkie otrzymane struktury pozwalały na zagnieżdżenie się i proliferację rozważanych w badaniu komórek. Nie zaobserwowano oznak zakażenia w trakcie hodowli. Przeprowadzone testy potwierdzają zakładaną funkcjonalność biodrukarki Desktop.
EN
Dental pulp regeneration has emerged as a promising area of research in dentistry, aiming to restore damaged or diseased dental pulp, which is crucial for maintaining tooth vitality and function. There is a critical need to develop filler materials to treat dental pulp injuries. In the current research, we developed a nanocomposite delivery system for dental pulp stem cells (DPSCs) conditioned media and curcumin-loaded chitosan nanoparticles (CURCNPs) for treating dental pulp tissue injury in a rat model. The delivery system was biocompatible with DPSCs and protected them from oxidative stress. In addition, the developed nanocomposite hydrogel exhibited remarkable anti-inflammatory and anti-oxidative functions. An in vivo study showed that dental pulp tissues treated with hydrogels loaded with the conditioned media and CURCNPs had significantly higher healing activity than other groups. This healing effect was associated with the upregulation of VEGF and TGF-β and the downregulation of TNF-α and IL-6. In summary, our nanocomposite delivery system, integrating DPSCs conditioned media and CURCNPs, demonstrates promising biocompatibility and remarkable healing potential for treating dental pulp injuries, suggesting clinical applicability.
EN
In connection with the increase in the number and severity of various types of bone tissue injuries received as a result of wounds during military operations in Ukraine, an important issue in orthopedics and traumatology is making informed decisions about the possibility of restoring the integrity and functions of bone tissue when using different types of composition, porosity and strength of apatite-biopolymer composites. The scientific direction of research is the development of principles and methods for making scientifically based decisions in the design and additive manufacturing of bone substitutes based on apatite-biopolymer composites with functional properties depending on the nature of the localization of the cavity bone defect and its size. A set of methods for analyzing images of bone tissue, taking into account its spatial structure, which are obtained by sensors of different physical nature, with the use of neural network models, development of methods of their design, optimization and training is proposed. The new knowledge obtained as a result of the project will become the necessary basis for making optimal decisions in practice for the introduction of the latest methods of treatment and prosthetics in trauma surgery, oncology, cranio-maxillofacial surgery, dentistry, taking into account the risks of biocompatibility of apatite-biopolymer composites. Software development of an intelligent decision support system will be used to design bone substitutes with controlled composition, structure, porosity and mechanical strength for the further selection of additive technology for its production from apatite-polymer composites, which will contribute to increasing the efficiency of treatment and prosthetics in orthopedics and traumatology.
EN
Tissue engineering enables the development of tissues and organs that closely replicate physiological dimensions and functions. This field aims to address challenges related to organ transplantation, regenerative medicine, and the treatment of damaged tissues by designing biomaterials that can support cellular growth and tissue repair. One of the most important aspects of tissue engineering is the development of advanced delivery systems for drugs and active substances, which play a critical role in promoting regeneration. Controlled release, stability, and compatibility with the engineered environment are crucial parameters for these systems, as they influence the effectiveness and safety of therapeutic applications. In this study, microbeads for active compounds delivery were designed using two materials: a chitosan-polyvinyl alcohol (9:1 CS:PVA) polymer blend and pure chitosan modified with a polyphenolic compound, gallic acid. The physicochemical properties of the obtained microspheres, such as swelling ratio, microstructure, wettability, and active compound release, were analysed. The 9:1 CS:PVA+GA composite demonstrated the most promising characteristics as an active substance carrier, particularly due to its favourable release profile. These results suggest that this material could be an effective drug delivery system that offers controlled and sustained release of therapeutic agents. Further research, especially investigating the biological properties of these materials, is needed to fully confirm their suitability for practical applications in drug delivery and tissue engineering.
EN
Radial flow packed-bed bioreactors (rPBBs) overcome the transport limitations of static and axial-flow perfusion bioreactors and enable development of clinical-scale bioengineered tissues. We developed criteria to design rPBBs with uniform medium radial flux distribution along bioreactor length ensuring uniform construct perfusion. We report a model-based analysis of the effect of non-uniform axial distribution of medium radial flux on pericellular concentration of oxygen and glucose. Albeit pseudo-homogeneous, the model predicts how medium flux, solutes transport and cellular consumption interact and determine the pericellular oxygen and glucose concentrations in the presence of pore transport resistance to design optimal axisymmetric rPBBs and enable control of pericellular environment. Thus, oxygen and glucose supply may match cell requirements as tissue matures. Flow and solute transport in bioreactor empty spaces and construct was described with Navier-Stokes and Darcy-Brinkman equations, and with convection-diffusion and convection-diffusion-reaction equations, respectively. Solute transport in construct accounted for Michaelian cellular consumption and bulk medium-tocell surface oxygen transport resistance in terms of a transport-equivalent bed of Raschig rings. The effect of relevant dimensionless groups on pericellular and bulk solute concentrations was predicted under typical tissue engineering operation and evaluated against literature data for bone tissue engineering. Axial distribution of medium radial flux influenced the distribution of pericellular solutes concentration, more so at high cell metabolic activity. Increasing medium feed flow rates relieved non-uniform solute concentration distribution and decayed at cell surface for metabolic consumption, also starting from axially non-uniform radial flux distribution. Model predictions were obtained in runtimes compatible with on-line control strategies.
EN
The aim of this study was to obtain degradable poly(Llactide-co-glycolide) (PLGA) microparticles (MPs) with a controlled size for bottom-up bone tissue engineering. The particles were produced using the classical single water/oil emulsification method by mixing with a magnetic stirrer and by using a novel approach based on the application of a microfluidic device. This study involved a thorough investigation of different concentrations of PLGA and poly(vinyl alcohol) (PVA) during microparticle fabrication. The oil phase was PLGA dissolved in dichloromethane or ethyl acetate at 1%, 2% and 4% w/v concentrations. The water phase was an aqueous solution of PVA at concentrations of 0.5%, 1%, 2%, 2.5%, 4% and 5% w/v. The size and size distribution of the MPs were evaluated with an optical microscope. Obtained MPs were incubated in contact with osteoblast-like MG-63 cells and after days 1 and 3, the cell viability was evaluated using the reduction of resazurin and the fluorescence live/dead staining. The results showed that for each concentration of PVA, the size of the MPs increased with an increase in the concentration of PLGA in the oil phase. The MPs obtained with the use of the microfluidic device were characterized by a smaller size and lower polydispersity compared to those obtained with emulsification by mixing. Both methods resulted in the generation of MPs cytocompatible with MG-63 cells, what paves the way to consider them as scaffolds for bottom-up tissue engineering.
EN
Biphasic monolithic materials for the treatment of osteochondral defects were produced from polysaccharide hydrogel, gellan gum (GG). GG was enzymatically mineralized by alkaline phosphatase (ALP) in the presence of calcium glycerophosphate (CaGP). The desired distribution of the calcium phosphate (CaP) mineral phase was achieved by limiting the availability of CaGP to specific parts of the GG sample. Therefore, mineralization of GG was facilitated by the diffusion of CaGP, causing the formation of the CaP gradient. The distribution of CaP was analyzed along the cross section of the GG. The formation of a CaP gradient was mainly affected by the mineralization time and the ALP concentration. The formation of CaP was confirmed by Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and mapping, as well as energy-dispersive X-ray spectroscopy (EDX) mapping of the interphase. The microstructure of mineralized and non-mineralized parts of the material was characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM) showing sub-micrometer CaP crystal formation, resulting in increased surface roughness. Compression tests and rheometric analyzes showed a 10-fold increase in stiffness of the GG mineralized part. Concomitantly, micromechanical tests performed by AFM showed an increase of Young’s modulus from 17.8 to more than 200 kPa. In vitro evaluation of biphasic scaffolds was performed in contact with osteoblast-like MG-63 cells. The mineralized parts of GG were preferentially colonized by the cells over the non-mineralized parts. The results showed that osteochondral scaffolds of the desired structure and properties can be made from GG using a diffusion-limited enzymatic mineralization method.
EN
Purpose: The review focuses on chitosan nanoparticle synthesis and its biomedical applications. The review briefly explains the biomedical applications of antimicrobials, cancer therapy, gene therapy, and anti-ageing. Notably, the chitosan biological activity can be further increased by coating metal ions such as iron oxide nanoparticles, gold nanoparticles, etc. Design/methodology/approach: Chitosan is the N-acetyl derivative of chitin, which has the unique properties of biodegradability, non-toxicity, polycationic property and biocompatibility— no reports of ZnO sulphated chitosan nanoparticles being produced for antibacterial. We hope for the conduction of antibacterial research of ZnO sulphated chitosan nanoparticles. Findings: The study establishes that metal oxide nano-CH, characterised by an expanded size range beyond conventional parameters, exhibits a broad spectrum of biomedical applications. Its commendable biological attributes, encompassing biocompatibility, non-toxicity, and biodegradability, make it a vehicle for drug delivery in medicine. Research limitations/implications: Nanomedicine is an emerging branch of medicine that applies tools and the basis of nanotechnology for disease prevention, treatment and diagnosis. Moreover, it helps overcome conventional medicine's limitations, including adverse side effects, poor pharmacokinetics and lack of selectivity. Originality/value: Using chitosan extracted from marine waste presents economic advantages. Furthermore, when coated with metal oxide nanoparticles, it enhances biomedical efficacy. Chitosan is an effective drug delivery vehicle, and its theranostic applications are valuable in the biomedical sector.
10
Content available Biomateriały hybrydowe na bazie związków krzemu
EN
Biomaterials based on silicon compounds are considered ideal building blocks of hybrid materials due to their unique structures and excellent performance. This review article highlights the selected achievements published by the Biomaterials Chemistry Research Group led by Professor Łukasz John, working at the Faculty of Chemistry, University of Wrocław, Poland. Paper deals with specific issues in the field of polysiloxanes and cage-like silsesquioxane-based hybrid materials, ranging from monomer functionalization and materials preparation to biomedical applications and tissue engineering. The findings reported in the original papers are summarized, and the challenges and prospects in the biomaterials field are also discussed for further development and exploitation.
EN
The civilization diseases of the 21st century are non-infectious disorders, affecting a large part of modern society. They are associated with the significant development of industry and technology, and hence with environmental pollution and an unhealthy lifestyle. These factors have led to the development of many civilization diseases, which currently include: cardiovascular diseases, respiratory diseases, diabetes, obesity, malignant tumors, gastrointestinal diseases, mental disorders and allergic diseases. The development of technologies, including modern therapies and new drugs, resulted in increase in life expectancy. This creates a global problem of an aging population with an increasing number of diseases of the old age, i.e. dementias. In addition, sedentary lifestyles and changing diets are the reasons why more and more people develop metabolic diseases, as well as neurological and cognitive disorders characterized by progressive damage to nerve cells and dementia. Currently, problem on a global scale is also the growing resistance to existing antimicrobial drugs. Therefore, the scientists face many challenges related to searching for the causes of these diseases, their diagnosis and treatment. Scientific research conducted at the Department of Biomedical Chemistry at the Faculty of Chemistry of the University of Gdańsk is part of this research trend. In this publication, we discuss various research topics with the long-term aim of solving the problems associated with the diseases mentioned above. The following chapters are dedicated to (i) looking for new effective fluorophores with diagnostic and anti-cancer activity; (ii) designing of new compounds with antibacterial and antiviral activity and their synthesis; (iii) investigating the mechanisms of amyloid deposit formation by human cystatin C and possibilities of inhibition of this process; (iv) designing and studies of compounds activating the proteasome with the potential to suppress the development of neurodegenerative diseases; (v) designing peptide fibrils and hydrogels as drug carriers; (vi) searching for peptide inhibitors of immune checkpoint as potential drugs for immunotherapy; (vii) studying the mechanism of action of selected herpesviruses by determining the structure of viral proteins and (viii) studying the composition of natural glycans and glycoconjugates in order to better understand the mechanisms of interaction of bacteria with the environment or with the host.
EN
Currently developing on a large scale, the opportunities for 3D printing represent more and more perspective solutions in the area of tissue engineering and personalized medicine. Due to their ability to reproduce the natural extracellular matrix and unique properties, hydrogels are popularly used materials to produce bioinks designated for 3D printing. Today, solutions based on sodium alginate and gelatin are frequently used compositions for this purpose. The high viability of the cells incorporated into bioink is the key parameter determining the application opportunities of printed structures. The parameters of the process used for the preparation of hydrogel compositions may have a direct impact on the viability of the cells incorporated within the printed structure. This study aims to develop a protocol for the preparation of hydrogel materials based on alginate and gelatin, providing the highest viability of the model osteoblast-like cell line Saos-2 incorporated directly into the bioink before the 3D bioprinting process. In the scope of this study, the analyzed process parameters of the preparation of the hydrogel bioinks are the method of combination of a polymer solution with biological material, the applied concentration, the cross-linking solution, and also the waiting time of the prepared hydrogel bioink for the 3D printing process. A key aspect of the study is the evaluation of the influence of 3D printing on changes in the survival rate of biological material directly after the manufacturing process and after individual incubation periods of the printouts in conditions reflecting the body’s environment.
PL
Medycyna regeneracyjna staje się szybko rozwijającą techniką w współczesnej biomedycynie. Coraz częściej na świecie są wykorzystywane nanocząstki do naprawiania i leczenia uszkodzonych komórek. Ten artykuł przeglądowy przedstawia wiedzę na temat kompozytów, składających się z polimeru oraz hydroksyapatytu, modyfikowanych nanocząstkami i ich zastosowaniami w medycynie regeneracyjnej.
EN
Regenerative medicine is becoming a rapidly developing technique in modern biomedicine. Nanoparticles are used increasingly to repair and heal damaged cells. The paper presents knowledge about the use of nanoparticles in the modification of polymer and hydroxyapatite composites and their applications in regenerative medicine.
EN
The aim of the additive manufacturing (AM) is a production of physical objects by adding material layer-by-layer based on virtual geometry developed in the computer system. The main criteria for the division of additive manufacturing methods are the way to apply the layer and the type of construction material. In most projects, the choice of method is a compromise between costs and properties (e.g. physical, chemical or mechanical) of the manufactured object. Currently, AM methods have found application in many areas of life, including industrial design, automotive, aerospace, architecture, jewellery, medicine and veterinary medicine, bringing many innovative and revolutionary solutions. The purpose of this article is to review of the additive production methods and present the potential of medical application.
PL
W artykule skupiono się na najważniejszym, z punktu widzenia przeciętnego człowieka, wykorzystaniu hydrożeli w medycynie. Są one stosowane jako aktywne opatrunki, inteligentne nośniki substancji o właściwościach terapeutycznych, materiały implantacyjne oraz rusztowania w inżynierii tkankowej. Ich zastosowanie dało początek nowatorskim metodom w zakresie leczenia ran, zwłaszcza pooparzeniowych. Opatrunki produkowane na bazie hydrożeli znacząco przyspieszają proces gojenia się ran, obniżają ryzyko infekcji, ale nade wszystko wpływają na poprawę komfortu fizycznego i psychicznego pacjenta w całym procesie leczenia.
EN
This article focuses on the most important, from the point of view of an average person, use of hydrogels in medicine. They are used as active dressings, intelligent carriers of substances with therapeutic properties, implantation materials, scaffolds in tissue engineering. Their use has initiated a new era in the treatment of wounds, especially after burns. Dressings produced on the basis of hydrogels significantly accelerate the process of wound healing, reduce the risk of infection, reduce the size of scars, but above all improve the physical and psychological comfort of the patient throughout the treatment process.
EN
3D bioprinting is a technology which shows great potential in regenerative medicine. The technology enables the fabrication of 3D functional tissue and artificial organs based on suitable biological inks. This review provides information about the bioinks used in 3D bioprinting technology. Recent literature reports have considered the division of bioinks based on their application in the fabrication of specific tissues and organs. The main attention has been paid to bioinks designed for regeneration of cartilage, bone and nerve tissue. Moreover, the newest research on bioinks for skin, blood vessels and liver regeneration have been presented.
PL
Biodrukowanie 3D jest technologią wykazującą duży potencjał w medycynie regeneracyjnej. Technologia umożliwia wytworzenie trójwymiarowych funkcjonalnych tkanek i sztucznych narządów w oparciu o odpowiednie tusze biologiczne. Przegląd dostarcza informacji o biotuszach stosowanych w technologii biodruku 3D. W najnowszych doniesieniach literaturowych uwzględniano podział biotuszy ze względu na ich zastosowanie w wytwarzaniu konkretnych tkanek i narządów. Główną uwagę zwrócono na biotusze przeznaczone do regeneracji tkanki chrzęstnej, kostnej oraz nerwowej. Ponadto zaprezentowano także najnowsze badania prowadzone w kierunku opracowania biotuszy stosowanych w odbudowie skóry, naczyń krwionośnych, a także wątroby. Słowa kluczowe: inżynieria tkankowa, biodrukowanie.
PL
W ostatnich latach nastąpił znaczny rozwój techniki biodrukowania 3D, będącej jednym z rozwiązań współczesnej inżynierii materiałowej. Biodrukowane struktury trójwymiarowe doskonale odwzorowują naturalne warunki panujące w organizmie. Szczególną rolę przypisuje się regeneracji tkanek i narządów w wykorzystaniem biotuszy zawierających żywe komórki. Jednym z głównych składników biotuszów są alginiany – polisacharydy charakteryzujące się biokompatybilnością oraz możliwością tworzenia struktury hydrożelowej. W pracy zaprezentowano najnowsze doniesienia literaturowe dotyczące alginianów stosowanych jako biotusze do odbudowy tkanki kostnej i chrzęstnej. Ponadto omówiono pokrótce właściwości tych polimerów oraz typy biodruku, takie jak biodruk ekstruzyjny, kropelkowy (inkjet) czy też wspomagany laserem.
EN
In recent years, there has been a significant development of 3D bioprinting technique, which is one of the solutions of current materials engineering. Bioprinted three-dimensional structures perfectly replicate the natural conditions in the body. A special role is attributed to the regeneration of tissues and organs using bioinks containing living cells. One of the main components of bioinks are alginates – polysaccharides characterized by biocompatibility and ability to form a hydrogel structure. This review presents recent literature reports on alginates used as bioinks for bone and cartilage reconstruction. Moreover, the properties of these polymers and types of bioprinting such as extrusion, droplet (inkjet) or laser-assisted bioprinting are briefly discussed.
first rewind previous Strona / 8 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.