Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 70

Liczba wyników na stronie
first rewind previous Strona / 4 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  SLM
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 4 next fast forward last
EN
The article presents the cost analysis of three techniques that can be used to produce a cylindrical part from Inconel 718 nickel alloy. First of them allows the part to be shaped by additive manufacturing (AM). In the second technique the shape is obtained by forging. Both techniques require the use of machining to give the final dimensional and shape accuracy of the manufactured part. The third technique is based solely on machining operations. Research has shown that the most expensive technique for high-volume production is SLM/LMF. Based on the case study, it can be concluded that after a year of production using the SLM/LMF, forging and machining methods, the carbon dioxide emission is the biggest in the additive manufacturing. Optimizing the Ra and Fc parameters causes differences in carbon dioxide emissions. The turning process including machining optimization due to Fc characterizes a higher ability to produce parts than optimization due to roughness parameter Ra.
EN
Selective laser melting (SLM) is one of the most effective methods of additive manufacturing (AM). It is used to manufacture products with very complex geometries using a wide range of materials. Practical process conditions are limited by the occurrence of undesirable melting instabilities that degrade the surface quality and lead to product defects. These disadvantages are related to the thermal limitations of the SLM process. The lower thermal limit is due to the need to completely melt the powder layer and partially remelt the underlying layer again to ensure proper bonding between the layers. Exceeding the upper thermal limit in the molten metal pool may cause extensive evaporation, boiling and ejection of molten metal droplets outside the melting area. The article presents an approach and methodology that enable the determination of thermal limits and the operating window of SLM/selective laser sintering (SLS) processes in a relatively simple way. The studies have been performed using various settings of SLM process parameters. The usefulness of the preliminary determination of thermal limitations and approximate prediction of operating window of SLM has been confirmed experimentally and by more accurate computer simulation.
EN
316L steel specimens with three different shear zones made by SLM (Selective Laser Melting) were subjected to dynamic tests using the Split Hopkinson Pressure Bar method. The effect of high-speed deformation on changes in microstructure was analyzed. In addition, the stress-strain relationship was determined from the SHPB results. To visualize the deformation process of the specimens during the tests, a camera with a high frame rate was used. It was shown that as the plastic deformation increases, the hardness of the material increases. Microstructural analysis of dynamically loaded areas revealed numerous defects. Twinning was found to be the main deformation mechanism. Large plastic deformation and many other microstructural changes such as shear bands, cracks and martensite nucleation were also observed.
PL
Próbki ze stali 316L z trzema różnymi strefami ścinania wykonane metodą SLM (Selective Laser Melting) poddano testom dynamicznym wykorzystując do tego metodę dzielonego pręta Hopkinsona (Split Hopkinson Pressure Bar). Przeanalizowano wpływ odkształceń o dużej szybkości na zmiany w mikrostrukturze. Ponadto na podstawie wyników badań SHPB wyznaczono zależność naprężenie- odkształcenie. W celu zobrazowania procesu odkształcania próbek podczas badań zastosowano kamerę o dużej częstości klatkowania. Wykazano, że wraz ze wzrostem odkształcenia plastycznego wzrasta twardość materiału. Analiza mikrostrukturalna obszarów obciążonych dynamicznie ujawniła liczne defekty. Stwierdzono, że głównym mechanizmem deformacji jest bliźniakowanie. Zaobserwowano również duże odkształcenia plastyczne i wiele innych zmian mikrostruktury, takich jak pasma ścinania, pęknięcia i zarodkowanie martenzytu.
EN
The 17-4 PH Stainless Steel material is known for its higher strength and, therefore, extensively used to build structures for aerospace, automotive, biomedical, and energy applications. The parts must operate satisfactorily in different environmental conditions to widen the diverse application. The selective laser melting (SLM) technique build parts cost-effectively, ensuring near-net shape manufacturability. Laser power, scan speed, and hatch distance operating at different conditions were used to develop parts and optimize for higher density in printed parts. Laser power, scan speed, and hatch distance resulted in the percent contribution towards density equal to 73.74%, 24.48%, and 1.78%. The optimized conditions resulted in higher density and relative density equal to 7.76 g/cm3 and 99.48%. Printed parts' corrosion rate and wear loss showed more stability in NaCl corrosive medium even at 75°C than 1M of HCL corrosive medium. Less pitting corrosion was observed on the samples treated in NaCl solution at 25°C and 75°C at 72 Hrs than in HCL solution. Therefore, 17-4 PH SS parts are best suited even in marine applications.
EN
Problems on the world market, related to delays in supply chains, have forced enterprises to adopt a more flexible approach in the production processes of the offered products. In order to meet customer needs, companies can often look for alternative supply chains, as well as take over the production of key components necessary to maintain business continuity. Therefore, companies have to make important decisions in the context of management. A simulation model may be a tool helpful in making decisions related to production planning, which, based on the actual data collected from the process, allows for the verification of decisions before entering them into the real system. The motivation to conduct the research was the search for answers: How entrepreneurs, while maintaining profitability, can ensure the continuity of production processes by searching for alternative production methods. The article considers a comparison of two production processes for the production of a shield type product: classic production - on a lathe and hybrid production using the SLM method and machining only technologically significant surfaces on a lathe. The main goal of the research is to compare two production processes: classic and hybrid in terms of efficiency, energy efficiency and production costs. The research takes into account the use of different laser powers and the possibility of incremental production of several products at the same time. In order to achieve the assumed goal, a simulation model was used to carry out the research, which was developed on the basis of preliminary experimental studies. A series of simulations were performed, taking into account the variability criteria, and then the efficiency, energy efficiency and profitability of using alternative production methods were analysed.
EN
This paper presents new results of microplasma spraying (MPS) of laboratory-synthesized hydroxyapatite (HA) powder coatings onto trabecular substrates obtained by selective laser melting (SLM) of a certified titanium medical alloy powder. The aim of the study was to establish the possibility of combining the technologies of MPS and additive manufacturing (AM) for the possible production of custom-designed implants with increased surface biocompatibility, as well as to establish the MPS parameters that ensure chemical purity of the HA coating and satisfactory adhesion of the coatings to the substrate. The structural-phase compositions of the initial HA powder and the plasma-sprayed HA coating were studied by X-ray diffraction analysis and transmission electron microscopy, and the adhesion strength of the coating was tested according to the F1147 standard of the American Society for Testing and Materials (ASTM). The main results of the study are the following: the application of the MPS technology for HA coating with an average thickness of 150±50 μm on trabecular substrates obtained by the SLM method has been shown. The parameters of MPS of HA coatings onto titanium implants with a trabecular surface have been established. It is also proved that using the appropriate MPS parameters, it is possible to obtain a HA coating with a 95% level of HA phases, 93% level of crystallinity, and the adhesion strength to the trabecular substrate of 24.7±5.7 MPa, which complies with the requirements of the international medical standard (International Organization for Standardization [ISO] 13779-2:2018). These results are of significance for a wide range of researchers developing plasma spray technologies for the manufacture of biocompatible coatings.
EN
Purpose: This paper presents an overview on some ceramic materials capable of achieving in-situ reinforcements in Al/Al-alloy metal matrix composites (MMCs) during laser processing. It also presents perspective on further exploitation of the in-situ reinforcement capabilities for high quality MMCs feedstock material development. Design/methodology/approach: The approach utilized in writing this paper encompasses the review of relevant literature on additive manufacturing (AM) of MMCs. Findings: It is widely accepted that the in-situ reinforcement approach has proven to be more advantageous than the ex-situ approach. Though there are still some challenges like the formation of detremental phases and the evaporation of low melting temperature elements, the in-situ reinforcement approach can be used to tailor design composite powder feedstock materials for the AM of MMCs. The preprocessing or tailor-designing in-situ metal matrix composite powder before laser melting into desired components holds more promises for metal additive manufacturing. Practical implications: The need for the development of MMCs powder feedstock that can be directly fabricated using suitable AM technique without prior powder processing like blending or mechanical alloying has not yet been addressed Therefore, having a pre-processed in-situ reinforced MMC feedstock powder can encourage easy fabrication of MMC and other advantages of AM technologies powder recycling. Originality/value: The idea explained in this article is relevant to materials development for AM processing of metal matrix composite. This paper has pointed out future trends for MMCs materials feedstock powder development and new ideas for further exploitation of MMCs and AM technologies. The advantages of tailor-designing composite powders other than merely mixing them has been emphasized.
EN
In the era of Industry 4.0, the digitization of production processes is one of the important elements contributing to the reduction of uncertainty related to the implementation of new production methods. The worldwide epidemic situation and its constraints have resulted in supply chain continuity problems. These problems make enterprises look for the possibility of producing products that they need at the moment and which they cannot obtain from the market. In special cases, this may also apply to spare parts necessary to maintain the continuity of production. The main reason for research on comparing production processes is meeting the challenges related to the pandemic situation and problems in maintaining timeliness, flexibility, and continuity of the supply chain. The first stage of the research was to visualize the course of the process and determine the lead times for both production methods. For further analysis, a digital process model was used to compare the hybrid and the classical method to check the viability of the interchangeability of methods for the production process of the flange part. The interchangeability of production methods was dictated by problems related to the supply of components for the execution of orders. The article simulates the model for unit and small-lot production in batches of 10 and 100 pieces, considering such aspects as: order completion time, energy consumption of the process, production costs, taking into account the classic and hybrid methods. The conducted research was aimed at determining the profitability of the production of flange-type products by means of classical processing and hybrid and checking the interchangeability of production methods in accordance with quality requirements as well as reducing uncertainty with the implementation of new production systems in changing market conditions. The simulations show that the use of hybrid production is recommended for unit production. In the case of small-lot production, already with 10 items, production in the traditional process is 21% cheaper, and for the production of 100 items, the cost of traditional production is reduced by 33% compared to hybrid production.
EN
Additive Manufacturing (AM) based on Selective Laser Sintering (SLS) and Selective Laser Melting (SLM) is relatively widely used to manufacture complex shape parts made from metallic alloys, ceramic and polymers. Although the SLM process has many advantages over the conventional machining, main disadvantages are the relatively poor surface quality and the occurrence of the material structure defect porosity. The paper presents key problems directly related to the implementation of AM, and in particular the selection and optimization of process conditions. The first section examines the issues of dimensional accuracy, the second surface quality and porosity problem determining the mechanical properties of manufactured products.
PL
W pracy przedstawiono kluczowe problemy związane z wdrożeniem technologii przyrostowej druku 3D w metalu, w szczególności wybór i optymalizację parametrów procesu. W pierwszej sekcji omówiono zagadnienia dokładności, druga porusza temat jakości powierzchni i problem porowatości/ gęstości przetopionego materiału określające właściwości mechaniczne wytwarzanych produktów. Technologia przyrostowa (AM) oparta na selektywnym spiekaniu laserowym (SLS) i selektywnym topieniu laserowym (SLM) jest coraz szerzej stosowana do wytwarzania części o skomplikowanych kształtach. Mimo wielu zalet procesu SLM w porównaniu z konwencjonalną obróbką, głównymi wadami są stosunkowo niska jakość powierzchni i występowanie porowatości/niskiej gęstości przetopionego materiału. Badania doświadczalne przeprowadzone zostały w zakładzie Nowoczesnych Technik Wytwarzania w Sieci Badawczej Łukasiewicz - Instytucie Lotnictwa. Próbki testowe wytworzono na drukarce 3D SISMA MySint 100 przy użyciu proszku CoCr. W badaniach na podstawie analizy wymiarowej sformułowano model matematyczny opisujący zależność średniej chropowatości powierzchni Ra od parametrów procesu SLM. Pomiary geometrii próbek na współrzędnej maszynie pomiarowej CMM i profilometrze wykorzystującym przewodność indukcyjną “Surftest SJ-210” potwierdziły adekwatność modelu matematycznego, a w szczególności, że chropowatość maleje wraz ze wzrostem mocy lasera oraz ze wzrostem odległości między ścieżkami skanowania, natomiast rośnie wraz z grubością proszku i prędkością skanowania. Zwiększenie mocy lasera i zmniejszenie grubości warstwy proszku umożliwia wytwarzanie próbek o porowatości poniżej 1%. Zwiększona grubość warstwy proszku prowadzido szybkiego wzrostu poziomu porowatości i chropowatości powierzchni. Ustawienie niskiej warstwy skutecznie poprawia jakość powierzchni wydruku, ale wyraźnie wydłuża czas drukowania.
10
Content available remote Zastosowanie techniki SLM na wykrojniki blach
PL
Jedną z technik druku 3D, dzięki której można wytworzyć metodą przyrostową niemalże lite elementy metalowe, jest metoda laserowego przetapiania proszków SLM (ang. selective laser melting). Jest to nowoczesna technologia pozwalająca na tworzenie elementów, które znajdują zastosowanie w obszarach począwszy od przemysłu motoryzacyjnego i lotniczego, a skończywszy na przemyśle stomatologicznym czy medycznym [1-3].
EN
One of the 3D printing technologies thanks to which almost solid metal elements can be produced using the additive method is SLM (selective laser melting). This is a modern technology that enables creating elements which are used in areas ranging from the automotive and aviation industry to the dental or medical industry [1-3].
EN
Methods of incremental manufacturing, i.e. 3D printing, have been experiencing significant growth in recent years, both in terms of the development of modern technologies dedicated to various applications, and in terms of optimizing the parameters of the process itself so as to ensure the desired mechanical and strength properties of the parts produced in this way. High hopes are currently being pinned on the use of highly penetrating types of radiation, i.e. synchrotron and/or neutron radiation, for quantitative identification of parameters characterizing objects produced by means of 3D printing. Thanks to diffraction methodologies, it is feasible to obtain input information to optimize 3D printing procedures not only for finished prints but also to monitor in situ printing processes. Thanks to these methodologies, it is possible to obtain information on parameters that are critical from the perspective of application of such obtained elements as stresses generated during the printing procedure itself as well as residual stresses after printing. This parameter, from the point of view of tensile strength, compression strength as well as fatigue strength, is crucial and determines the possibility of introducing elements produced by incremental methods into widespread industrial use.
EN
The greatest challenge of widely developed incremental manufacturing methods today is to obtain, as a result of the manufacturing process, such components that will have acceptable strength properties from the point of view of a given application. These properties are indirectly determined by three key characteristics: the level of surface residual stress, the roughness of the component and its porosity. Currently, the efforts of many research groups are focused on the problem of optimizing the parameters of incremental manufacturing so as to achieve the appropriate level of compressive residual stress, the lowest possible porosity and the lowest possible roughness of parts obtained by 3D methods. It is now recognized that determining the level of these three parameters is potentially possible using experimental X-ray diffraction methods. The use of this type of radiation, admittedly, is only used to characterize the surface layer of elements, but its undoubted advantage is its easy availability and relatively low cost compared to experiments carried out using synchrotron or neutron radiation.
EN
The article presents the technology of layered casting with the use of 3D printing to make a frame insert. The insert was made of powdered titanium and then filled with liquid cast iron. The paper presents the results of research, including structure observation and hardness measurements, as well as abrasion resistance tests. The results indicate the possibility of creating a local reinforcement using a frame insert. The resulting casting is characterized by a local increase in hardness and, in addition, an increase in abrasion resistance of the entire surface layer. The quality of the obtained connection depends strongly on the casting parameters.
EN
The aim of the study is to identify the endurance parameters of prosthetic crowns veneered with dedicated ceramics on metal, glass-ceramic, and ceramic frameworks. Metal frameworks were made using CAD/CAM milling technology and SLM technology, while the glass-ceramic and ceramic frameworks were produced using only the CAD/CAM milling technology. The research materials are samples replicating the layered structures of prosthetic crowns. The veneering procedure must ensure the adhesion of the ceramics to the loadbearing framework. The tests modelling the conditions of concentrated loads during chewing were carried out using the Instron 3345 testing machine. Determination of microhardness in cross-sections through layered structures of crowns was performed using the HMV Micro Hardness Tester. The comparison of force loading the indenter as a function of penetration depth indicates that the value of the maximum depth depends on the configuration of microhardness of the framework and dentine. The zirconium ceramics ZrO2 (3Y-TZP) – veneered with Elephant Sakura silica ceramics – should be indicated as the most advantageous material composition.
PL
Celem pracy jest identyfikacja parametrów wytrzymałościowych koron protetycznych licowanych dedykowanymi ceramikami na podbudowach metalowych, szklanoceramicznych i ceramicznych. Podbudowy metalowe zostały wytworzone w technologii frezowania CAD/CAM i w technologii SLM, a podbudowy szklanoceramiczne i ceramiczne w technologii frezowania CAD/CAM. Materiałem badań są próbki replikujące warstwowe struktury koron protetycznych. W wyniku procedury licowania musi być zapewniona adhezjaceramiki do podbudowy nośnej. Badania modelujące warunki skoncentrowanych obciążeń podczas żucia wykonano na maszynie wytrzymałościowej Instron 3345. Wyznaczenie mikrotwardości w przekrojach przez warstwowe struktury koron zrealizowano na maszynie HMV Micro Hardness Tester. Zestawienie siły obciążającej wgłębnik w funkcji głębokości penetracji wskazuje, że wartość maksymalnego zagłębienia, zależy od konfiguracji mikrotwardości podbudowy i mikrotwardości dentyny. Jako najkorzystniejszą kompozycję materiałową należałoby wskazać ceramikę cyrkonową ZrO2 (3Y – TZP) – licowaną ceramiką krzemionkową Elephant Sakura.
EN
The paper presents the scopes of examination of the cancellous bone, 3D CAD design of scaffolds of the cancellous bone and their creation with a laser beam in SLM incremental technology. The geometrical size of the scaffold and the material feature corresponding to the Young's modulus are the parameters describing the porous structure of the cancellous bone. In the statistical analysis, these values are defined as independent variables. The physical properties of the scaffold are defined by the strength parameters determined by hardness (e.g. HIT, HM, HV and are dependent variables). The REGMULT multiple regression program was used to develop the research results. However, to optimize the porous structure of the scaffold, the single-criteria optimization program SYEQL3 was used.
PL
W pracy przedstawiono zakresy badania kości gąbczastej, projektowania 3D CAD rusztowań (skaffoldów) kości gąbczastej oraz ich tworzenia wiązką lasera w technologii przyrostowej SLM. Parametrami opisującymi porowatą strukturą kości gąbczastej są: wielkości geometryczne rusztowania oraz cecha materiałowa odpowiadająca modułowi Younga. Wielkości te w analizie statystycznej definiowane są jako zmienne niezależne Własności fizykalne rusztowania zdefiniowane przez parametry wytrzymałościowe (twardości, np. HIT, HM, HV) są zmiennymi zależnymi. Do opracowania wyników badań zastosowano program regresji wielokrotnej o nazwie REGMULT. Do optymalizacji struktury porowatej skaffoldu, wykorzystano program optymalizacji jednokryterialnej SYEQL3.
EN
Industries that rely on additive manufacturing of metallic parts, especially biomedical companies, require material science-based knowledge of how process parameters and methods affect the properties of manufactured elements, but such phenomena are incompletely understood. In this study, we investigated the influence of selective laser melting (SLM) process parameters and additional heat treatment on mechanical properties. The research included structural analysis of residual stress, microstructure, and scleronomic hardness in low-depth measurements. Tensile tests with specimen deformation analysis using digital image correlation (DIC) were performed as well. Experiment results showed it was possible to observe the porosity growth mechanism and its influence on the material strength. Specimens manufactured with 20% lower energy density had almost half the elongation, which was directly connected with the porosity growth during energy density reduction. Hot isostatic pressing (HIP) treatment allowed for a significant reduction of porosity and helped achieve properties similar to specimens manufactured using different levels of energy density.
EN
Selective Laser Melting (SLM) is a modern manufacturing method with many applications in medicine, aerospace and auto-motive industries. SLM processed materials are characterized by good dimensional accuracy and properties comparable or superior to materials obtained by traditional processing methods. In this paper an SLM process was used to obtain 316L stainless steel parts. This paper presents the microstructure, chemical and phase composition, physicochemical and electrochemical properties of 12 groups of tested samples, differentiated by the SLM processing parameters. Based on the investigation, it can be inferred that the selection of the appropriate SLM parameters is very important to determined final material properties. The samples producedwith the energy density E = 600 J/mm3 were observed to possess optimum properties - a homogeneous structure, density closest to the desired one, good wettability and pitting corrosion resistance.
EN
Microstructure and wear property of AlSi10Mg alloy manufactured by selective laser melting (SLM) were investigated. Also, the effect of post heat treatment on the mechanical and wear properties was examined. Two kinds of heat treatments (direct aging (DA) and T6) were separately conducted to SLM AlSi10Mg alloy. As-built alloy had a cellular structure formed inside the moltenpool. Eutectic Si was also observed at the cellular boundary in as-built alloy. After DA heat treatment, the cellular structure still remained, and a large amount of nano-size Si particles were newly formed inside the cell structure. Both molten pool and cellular structure disappeared, and the size of Si increased in T6 alloy. The values of Vickers hardness measured as 139.4 HV (DA alloy), 128.0 HV (As-built alloy) and 85.1 HV (T6 alloy), respectively. However, concerning to wear property, T6 alloy showed better wear resistance than other alloys. The correlation between microstructure and wear mechanism of SLM AlSi10Mg alloy was also discussed.
20
Content available remote Research of 316L metallic powder for use in SLM 3D printing
EN
3D metal printing is an increasingly popular production of steel parts. The most widespread and most accurate method is SLM (Selective Laser Melting), which uses metallic powder as the input material. The article is dedicated to researching the supplied powder from Renishaw. The powder is made by gas atomization and 3 phases of powder (virgin, sift and waste) that are present in the SLM process are examined. Powder morphology by SEM electron microscopy is investigated and the porosity of the powder is measured by optical method. Next, the powder grain size fraction is examined. In conclusion, there are recommendations and other directions of possible research. The main quantitative result from research is that, in general, small particles are reduced in the sift powder and the number of larger particles is increased, but the powder is still usable for further use.
first rewind previous Strona / 4 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.