Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical study of selected military vehicle chassis subjected to blast loading in terms of tire strength improving

Treść / Zawartość
Warianty tytułu
Języki publikacji
In the paper a chosen model of the light armoured vehicle was tested in terms of blast loading. More precisely, the blast propagation and interaction with the tire behaviour and suspension system elements of the light-armoured vehicle (LAV) was simulated. The chosen military vehicle meets the requirements of levels 2A and 2B of STANAG 4569 standard. Based on the obtained results, two modifications were proposed for the strength and resistance improvement of the wheel. The first consisted of inserting the rubber runflat ring inside the tire, whereas in the second the honeycomb-like composite wheel was implemented. Non-linear dynamic simulations were carried out using the explicit LS-Dyna code, with multi-material Arbitrary Lagrangian-Eulerian formulation for simulation the blast process.
Słowa kluczowe
LAV   opona   analiza MES  
Opis fizyczny
Bibliogr. 37 poz., rys., tab., fot., wykr.
  • Department of Mechanics and Applied Computer Science, Military University of Technology, 2 Gen. Sylwestra Kaliskiego St., 00-908 Warsaw, Poland
  • Department of Mechanics and Applied Computer Science, Military University of Technology, 2 Gen. Sylwestra Kaliskiego St., 00-908 Warsaw, Poland
  • [1] W. Borkowski and G. Motrycz, “Analysis of IED explosion on carrier road safety”, J. KONES and Powertrain Transport 19 (4), 75-82 (2012).
  • [2] G. Motrycz, P. Stryjek, J. Ejsmont, and H. Kalwa, “Tire performance after explosive decompression”, J. Science of the Gen. Tadeusz Kosiuszko Military Academy of Land Forces 169 (3), 134-144 (2013).
  • [3] E. Krzystala, A. Mezyk, and S. Kciuk, “Analysis of the impact of explosion on special wheeled vehicles and their crews”, High-speed Tracked Vehicles 28 (2), 99-110 (2011).
  • [4] NSA, Procedures for Evaluating the Protection Levels of Logistic and Light Armoured Vehicles for KE and Artillery Threat, NSA, Brussels, 2004.
  • [5] P. Baranowski, J. Malachowski, and T. Niezgoda, “Numerical analysis of vehicle suspension system reponse subjected to blast wave”, Applied Mechanics and Materials 82, 728-733 (2011).
  • [6] R.R. Sahu and P.K. Gupta, “Blast diffusion by different shapes of vehicle hull”, Int. J. Automotive Engineering and Technologies 2 (4), 130-139 (2013).
  • [7] J.L. Lacome, Analysis of Mine Detonation, SPH Analysis of Structural Response to Anti-Vehicles Mine Detonation, LSTC, Livermore, 2007.
  • [8] G. Toussaint and R. Durocher, “Finite element simulation using SPH particles as loading on typical light armoured vehicles”, Proc. 10th Int. LS-Dyna Users Conf. 1, 11-18 (2008).
  • [9] A. Morka, L. Kwasniewski, and J. Wekezer, “Assessment of passenger security in paratransit buses”, J. Public Transportation 8 (4), 47-63 (2005).
  • [10] M. Grujicic, B. Pandurangan, I. Haque, B.A. Cheeseman, W.N. Roy, and R.R. Skaggs, “Computational analysis of mine blast on a commercial vehicle structure”, Multidiscipline Modeling in Materials and Structures 3 (4), 431-460 (2007).
  • [11] I.R. Cho, K.W. Kim, and H.S. Jeong, “Numerical investigation of tire standing wave using 3-D patterned tire model”, J. Sound and Vibration 305, 795-807 (2007).
  • [12] P. Helnwein, C.H. Liu, G. Meschke, and H.A. Mang, “A new 3D finite element model for cord-reinforced rubber composites application to analysis of automobile tyres”, Finite Elements in Analysis and Design 4, 1-16 (1993).
  • [13] J.D. Reida, D.A. Boesch, and R.W. Bielenberg, “Detailed tire modeling for crash applications”, Int. J. Crashworthiness 12 (5), 521-529 (2007).
  • [14] R.V. Neves, G.B. Micheli, and M. Alves, “An experimental and numerical investigation on tyre impact”, Int. J. Impact Engineering 10, 685-693 (2010).
  • [15] P. Baranowski, P. Bogusz, P. Gotowicki, and J. Malachowski, “Assessment of mechanical properties of off road vehicle tire: coupons testing and FE model development”, Acta Mechanica et Automatica 6 (2), 17-22 (2012).
  • [16] J. Malachowski, M. Wesolowski, and W. Krason, “Computational study of transport aircraft landing gear during touchdown”, J. KONES and Powertrain Transport 13 (4), 187-195 (2007).
  • [17] S.L. Sokolov, “Calculation of the stress- strain state of pneumatic tires by the finite element method”, J. Machinery Manufacture and Reliability 36 (1), 45-49 (2007).
  • [18] K.T. Danielson and A.K. Noor, “Three-dimensional finite elements analysis in cylindrical coordinates for nonlinear solid mechanics problems”, Finite Elements in Analysis and Design 27, 225-249 (1997).
  • [19] M. Shiraishi, N. Iwasaki, T. Saruwatari, and K. Hayashi, “Developing FE-Tire model library for durability and crash simulations”, Proc.7-th Int. LS-DYNA Users Conf. 1, 29-36 (2002).
  • [20] K. Xia, “Finite element modeling of tire/terrain interaction: Application to predicting soil compaction and tire mobility”, J. Terramechanics 48 (2), 113-123 (2011).
  • [21] H. Guo, C. Bastien, M. Blundell, and G. Wood, “Development of a detailed aircraft tyre finite element model for safety assessment”, Materials and Design 53, 902-909 (2014).
  • [22] S. Kolling, P.A. Du Bois, D.J. Benson, and W.W. Feng, “A tabulated formulation of hyperelasticity with rate effects and damage”, Computational Mechanics 40, 885-899 (2007).
  • [23] P. Baranowski and J. Malachowski, “Blast wave and suspension system interaction - numerical approach”, J. KONES Powertrain and Transport 18 (2), 17-24 (2011).
  • [24] P. Baranowski and J. Malachowski, “Numerical investigations of terrain vehicle tire subjected to blast wave”, J. KONES Powertrain and Transport 18 (1), 23-30 (2011).
  • [25] B. Pondel and J. Malachowski, Numerical Analysis of Vehicle Tire Operation, Military University of Technology, Warsaw, 2006, (in Polish).
  • [26] J. Malachowski, Modelling and Research of Interaction Between Gas and Pipe Structures Subjected to Pressure Impulse, Military University of Technology, Warsaw, 2010, (in Polish).
  • [27] P. Baranowski, “Rubber material study in terms of modelling of terrain vehicle tire subjected to impulse loading”, PhD. Thesis, Military University of Technology, Warsaw, 2014.
  • [28] J.O. Hallquist, LS-Dyna. Theory Manual, Livermore Software Technology Corporation, Livermore, 2006.
  • [29] P. Baranowski, J. Janiszewski, and J. Malachowski, “Study on computational methods applied to modelling of pulse shaper in split-Hopkinson bar”, Archives Mechanics 66 (6), 429-452 (2014).
  • [30] L. Mazurkiewicz and J. Malachowski, “I-beam structure under dynamic loading - Eulerian mesh density study”, J. KONES Powertrain and Transport 18 (3), 245-252 (2011).
  • [31] J. Wang, Simulation of Landmine Explosion Using LSDYNA3D Software: Benchmark Work of Simulation of Explosion in Soil and Air, Aeronautical and Maritime Research Laboratory, Sydney, 2001.
  • [32]
  • [33]
  • [34] A. M .Bothe, “Designed by nature”, Diesel Progress, 44-45 (2008).
  • [35]
  • [36] L. Mazurkiewicz, D. Kolodziejczyk, K. Damaziak, J. Malachowski, M. Klasztorny, and P. Baranowski, “Load carrying capacity numerical study of I-beam pillar structure with blast protective panel”, Bull. Pol. Ac.: Tech. 61 (2), 451-457 (2013).
  • [37] D. Ambrosini, B. Luccioni, and R. Danesi, “Influence of the soil properties on craters produced by explosions on the soil surface”, Mecanica Computacional 23, 571-590 (2004).
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.