Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-fd07a1d9-e1be-463b-b1ec-7ac3af257317

Czasopismo

Materials Science Poland

Tytuł artykułu

Ultrasound assisted green synthesis of cerium oxide nanoparticles using Prosopis juliflora leaf extract and their structural, optical and antibacterial properties

Autorzy Arunachalam, T.  Karpagasundaram, U.  Rajarathinam, N. 
Treść / Zawartość http://www.materialsscience.pwr.wroc.pl/
Warianty tytułu
Języki publikacji EN
Abstrakty
EN Cerium oxide nanoparticles (CONPs) were prepared using ultrasound assisted leaf extract of Prosopis juliflora acting as a reducing as well as stabilizing agent. The synthesized CONPs were characterized by ultraviolet-visible absorption spectroscopy (UV-Vis), particle size analyzer (PSA), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and high-resolution transmission electron microscopy (HRTEM). From the UV-Vis analysis, the optical band gap of the prepared CONPs (Eg= 3.62 eV) was slightly increased as compared to the bulk ceria (Eg= 3.19 eV). The phytochemicals in the extract reduced the particle size to 3.7 nm ± 0.3 nm, as it is evident from the PSA. FT-IR results confirmed the Ce-O stretching bands by showing the peaks at 452 cm-1. The Raman spectrum showed a characteristic peak shift for CONPs at 461.2 cm-1. XRD analysis revealed the cubic fluorite structure of the synthesized nanoparticles with the lattice constant, a of 5.415 Å and unit cell volume, V of 158.813 Å3. XPS signals were used to determine the concentration of Ce3+and Ce4+in the prepared CONPs and it was found that major amount of cerium exist in the Ce4+state. HRTEM images showed spherical shaped particles with an average size of 15 nm. Furthermore, the antibacterial activity of the prepared CONPs was evaluated and their efficacies were compared with the conventional antibiotics using disc diffusion assay against a set of Gram positive (G+) bacteria (Staphylococcus aureus, Streptococcus pneumonia) and Gram negative (G-) bacteria (Pseudomonas aeruginosa, Proteus vulgaris). The results suggested that CONPs showed antibacterial activity with significant variations due to the differences in the membrane structure and cell wall composition among the two groups tested.
Słowa kluczowe
EN cerium oxide nanoparticles   Prosopis juliflora   structural   optical properties   antibacterial properties  
Wydawca Springer
Czasopismo Materials Science Poland
Rocznik 2017
Tom Vol. 35, No. 4
Strony 791--798
Opis fizyczny Bibliogr. 49 poz., rys., tab.
Twórcy
autor Arunachalam, T.
  • Department of Industrial Biotechnology, Government College of Technology, Coimbatore, 641013, India, thiru@gct.ac.in
autor Karpagasundaram, U.
  • Department of Chemistry, Government College of Technology, Coimbatore, 641013, India
autor Rajarathinam, N.
  • Department of Industrial Biotechnology, Government College of Technology, Coimbatore, 641013, India
Bibliografia
[1] MIAO J.J., WANG H., LI Y.R., ZHU J.M., ZHU J.J., J. Cryst. Growth, 281 (2005), 525.
[2] KORSVIK C., PATIL S., SEAL S., SELF S., Chem. Commun., 10 (2007), 1056.
[3] CHANDAR K.N., JAYAVEL R., Physica E, 58 (2014), 48.
[4] DARROUDI M., HOSEINI S.J., OSKUEE R.K., HOSSEINI H.A., GHOLAMI L., GERAYLI S., Ceram. Int., 40 (2013), 7425.
[5] RENU G., DIVYA RANI V.V., NAIR S.V., SUBRAMANIAN K.R.V., LAKSHMANAN V.K., Adv. Sci. Lett., 6 (2012), 17.
[6] ARUMUGAM A., KARTHIKEYAN C., HAMEED A.S.H., GOPINATH K., GOWRI S., KARTHIKA V., Mat. Sci. Eng. C-Mater., 49 (2015), 408.
[7] CHOUDHURY B., CHOUDHURY A., Mater. Chem. Phys., 131 (2012), 666.
[8] HU C., ZHANG Z., LIU H., GAO P., WANG Z.L., Nanotechnology, 17 (2006), 5983.
[9] HUANG Y., CAI Y., QIAO D., LIU H., Particuology, 9 (2011), 170.
[10] KRISHNAN A., SREEREMYA T.S., MURRAY E., GHOSH S., J. Colloid Interf. Sci., 389 (2013), 16.
[11] MAENSIRI S., MASINGBOON C., LAOKUL P., JAREONBOON W., PROMARAK V., ANDERSON P.L., SERAPHIN S., Cryst. Growth Des., 7 (2007), 950.
[12] MAENSIRI S., LABUAYAI S., LAOKUL P., KLINKAEWNARONG J., SWATSITANG E., Jpn. J. Appl. Phys., 53 (2014), 06JG14.
[13] PHOKA S., LAOKUL P., SWATSITANG E., PROMARAK V., SERAPHINC S., MAENSIRI S., Mater. Chem. Phys., 115 (2009), 423.
[14] SATHYAMURTHY S., LEONARD K.J., DABESTANI R.T., PARANTHAMAN M.P., Nanotechnology, 16 (2005), 1960.
[15] SURESH R., PONNUSWAMY V., MARIAPPAN R., Appl. Surf. Sci., 273 (2013), 457.
[16] TAO Y., GONG F.H., WANG H., WU H.P., TAO G.L., Mater. Chem. Phys., 112 (2008), 973.
[17] KHANA S.A., AHAMAD A., Mater. Res. Bull., 48 (2013), 4134.
[18] THOVHOGI N., DIALLO A., GURIB-FAKIM A., MAAZA M., J. Alloy Compd., 647 (2015), 392.
[19] MAQBOOL Q., NAZAR M., NAZ S., HUSSAIN T., JABEEN N., KAUSAR R., ANWAAR S., ABBAS F., JAN T., Intl. J. Nanomedicine, 11 (2016), 5015.
[20] PASIECZNIK N.M., FELKER P., HARRIS P.J.C., HARSH L.N., CRUZ G., TEWARI J.C., CADORET K., MALDONADO L.J., The Prosopis juliflora - Prosopis pallida Complex: A Monograph, HDRA, Coventry, UK, 2001.
[21] HARRIS P.J.C., PASIECZNIK N.M., SMITH S.J., BILLINGTON J.M., RAMIREZ L., Forest Ecol. Manag., 180 (2003), 153.
[22] SEETHA LAKSHMI B., NAIDU K.C., MURTHY Y.L.N., BOBBARALA V., PANDIT N., J. Pharm. Res., 3 (2010), 356.
[23] HEBBAR S.S., HARSHA V.H., SHRIPATHI V., HEGDE G.R., J. Ethnopharmacol., 94 (2004), 261.
[24] AGRA M.F., SILVA K.N., BASILIO I.J.L.D., FREITAS P.F., BARBOSA-FILHO J.M., Rev. Bras. Farmacogn., 18 (2008), 472.
[25] SENTHILKUMAR N., VARMA P., GURUSUBRAMANIAN G., Parasitol. Res., 104 (2009) 237.
[26] AHMAD V.U., SULTANA A., QAZI S., J. Nat. Prod., 52 (1989), 497.
[27] AHMAD A., KHURSHEED A.K., SABIHA Q., VIQARUDDIN A., Fitoterapia, 60 (1989), 86.
[28] AHMAD A., KHURSHEED A.K., SABIHA Q., VIQARUDDIN A., Drug Res., 39 (1989), 652.
[29] SATISH S., RAVEESHA K.A., JANARDHANA G.R., Lett. Appl. Microbiol., 28 (1999), 145.
[30] KANTHASAMY A., SUBRAMANIAN S., GOVINDASAMY S., Indian Drugs, 26 (1988), 390.
[31] GURUNATHAN S., HAN J.W., KWON D.N., KIM J.H., Nanoscale Res. Lett., 9 (2014), 373.
[32] OREL Z.C., OREL B., Phys. Status Solidi. B, 186 (1994), K33.
[33] TSUNEKAWA S., WANG J.T., KAWAZOE Y., J. Appl. Phys., 94 (2003), 3654.
[34] GOHARSHADI E.K., SAMIEE S., NANCARROW P., J. Colloid Interf. Sci., 356 (2011), 473.
[35] KOSACKI I., SUZUKI T., ANDERSON H.U., COLOMBAN P., Solid State Ionics, 149 (2002), 99.
[36] KOSACKI I., PETROVSKY V., ANDERSON H.U., J. Am. Ceram. Soc., 85 (2002), 2646.
[37] BARKER A., SIEVERS A., Rev. Mod. Phys., 47 (1975), S1.
[38] PARAYANTHAL P., POLLAK F.H., Phys. Rev. Lett., 52 (1984), 1822.
[39] WEBER W.H., BASS K.C., MCBRIDE J.R., Phys. Rev., B, 48 (1993), 178.
[40] BURROUGHS P., HAMNETT A., ORCHARD A.F., THORNTON G., J. Chem. Soc. Dalton Trans., 17 (1976), 1686.
[41] ABBAS F., IQBAL J., JAN T., J. Alloy Compd., 648 (2015), 1060.
[42] LIMA R., SEABRA A.B., DURAN N., J. Appl. Toxicol., 32 (2012), 867.
[43] HAMEED A.S.H., KARTHIKEYAN C., SASIKUMAR S., KUMAR S., KUMARESAN S., RAVI G., J. Mater. Chem. B, 1 (2013), 5950.
[44] XIA T., KOVOCHICH M., BRANT J., HOTZE M., SEMPF J., OBERLEY T., SIOUTAS C., YEH J.I., WIESNER M.R., NEL A.E., Nano Lett., 6 (2006), 1794.
[45] XIA T., KOVOCHICH M., LIONG M., MADLER L., GILBERT B., SHI H., YEH J.I., ZINK J.I., NEL A.E., ACS Nano, 2 (2008), 2121.
[46] BURELLO E., WORTH A.P., Nanotoxicology, 5 (2011), 228.
[47] DEVASAGAYAM T., TILAK J.C., BOLOOR K.K., KETAKI S.S., SAROJ S.G., LELE R.D., J. Assocn. Physicians of India, 52 (2004), 796.
[48] LI Y., ZHANG W., NIU J.F., CHEN Y.S., ACS Nano, 6 (2012), 5164.
[49] TONG G.X., DU F.F., LIANG Y., J. Mater. Chem. B, 1 (2012), 454.
Uwagi
PL Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-fd07a1d9-e1be-463b-b1ec-7ac3af257317
Identyfikatory
DOI 10.1515/msp-2017-0104