PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Compressor Blade Fatigue Diagnostics and Modelling with the Use of Modal Analysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper investigates the diagnostic and research aspects of the compressor blade fatigue. The authors have reviewed the characteristics of different modes of metal blade fatigue (LCF, HCF, VHCF). The polycrystalline defects and impurities influencing the fatigue, along with their related surface finish techniques, have been taken into account. The experimental methods of structural health assessment have been considered. The Tip Timing (TTM), Experimental Modal Analysis (EMA) and Metal Magnetic Memory (MMM) provide information on the damage of the diagnosed object (compressor blade). It has been proven that the shape of resonance characteristics gives an ability to determinate if fatigue or a blade crack is concerned. Early damage symptoms, i.e. modal properties of material strengthening and weakening phases have been described. The experimental verification of the FEM model is presented based on a large body of experimental data collected by the author.
Rocznik
Tom
Strony
112--133
Opis fizyczny
Bibliogr. 42 poz., rys., tab., wykr., wzory
Twórcy
autor
  • Air Force Institute of Technology, Warsaw, Poland
autor
  • Air Force Institute of Technology, Warsaw, Poland
Bibliografia
  • [1] US Patents 2575710 (1951), 3058339 (1962), 3467358 (1969), 3597963 (1971), 4153388 (1979), 4593566 (1986), 4827435 (1989), 5148711 (1992), 5479826 (1996), 6094989 (2000)
  • [2] Witos, M. (1994). Diagnosing of technical condition of turbine engine compressor blades using non-contact vibration measuring method. Dissertation, ITWL Warszawa (pol.)
  • [3] von Flotow A., Drumm, M. J. (2002). Engine Sensing Technology Hardware & Software to Monitor Engine Rotor Dynamics Using Blade Time-Of-Arrival and Tip Clearance. Hood River, OR, USA, www.hoodtech.com
  • [4] Washburn, R. (2004). Amplitude and Phase Variations Associated with Low Order Resonance Responses Subjected to Time Varying Excitation Sources. Proc. of 9th National Turbine Engine High Cycle Fatigue Conference. March 2004, North Carolina.
  • [5] Zielinski, M., Ziller, G. (2005). Noncontact Crack Detection on Compressor Rotor Blades to Prevent Further Damage after HC-Failure. RTO MP-AVT-121 Meeting Proceedings, NATO, paper 19. (www.mtu.de)
  • [6] Witos, M., Szczepanik, R. (2005). Turbine Engine Health/Maintenance Status Monitoring with Use of Phase-Discrete Method of Blade Vibration Monitoring. RTO-MP-AVT -121 Meeting Proceedings, NATO, paper 2.
  • [7] Duan, F., Fang, Z., Sun, Y. & Ye, S. (2005). Real-time Vibration Measurement Technique Based on Tip-timing for Rotating Blades. Opto-Electronic Engineering. 30(1), 29-31.
  • [8] Ayes, B.W., Arnold, S., Vining, Ch. & Howard, R. (2005). Application of Generation 4 Non-contact Stress Measurement System on HCF Demonstrator Engines. Proc. of 10th National Turbine Engine High Cycle Fatigue (HCF) Conference. Dayton, USA.
  • [9] http://www.agilismeasurementsystems.com
  • [10] Brouckaert, J.F. (editor). Tip Timing and Tip Clearance Problems in Turbomachinary. Lecture Series 3-2007, VKI Belgium, 2007.
  • [11] Witos, M. (2008). Turbine Engine Health/Maintenance Status Monitoring with Use of Tip Timing Method. Proc. of 4th European Workshop on Structural Health Monitoring 2008. DEStech Publication Inc., pp. 157-164.
  • [12] Witos, M.(2008). On the Modal Analysis of a Cracking Compressor Blade. Research works of AFIT, Issue 23, pp. 21-36
  • [13] Vlasov, V.T., Dubov, A.A. (2004). Physical Bases of the Metal Magnetic Memory Method. Moscow: ZAO “Tisso” Publishing House.
  • [14] Dubow, A. A., Dubow, Al. A., Kolokolnikow, S. M. (2004). Metoda magnetycznej pamięci metalu (MPM) i przyrządy kontroli. Warszawa: RESURS.
  • [15] Ding, X., Li, J., Li, F. & Pang, X. (2008). Magnetic Memory Inspection of High Pressure Manifoolds. 17th World Conference on Nondestructive Testing, 25-28 Oct 2008, Shanghai, China.
  • [16] Lisiecki, J. (2004). O metodzie magnetycznej pamięci materiału. Prace Naukowe ITWL, Warszawa, Zeszyt 18, s. 51-84.
  • [17] Liu, Q., Lin, J., Chen, M., Wang, C., Wang, G., Zhao, F. Z., Geng, Y. & Zheng, Ch. (2008). A Study of Inspecting the Stress on Downhole Metal Casing in Oilfields with Magnetic Memory Method. 17th World Conference on Nondestructive Testing, 25-28 Oct 2008, Shanghai, China.
  • [18] Radziszewski, A. (2001). Doświadczenia z kontroli urządzeń i ich oprzyrządowania w polskich przedsiębiorstwach z zastosowaniem metody magnetycznej pamięci metalu. Materiały 30 KKBN, Szczyrk. Zeszyty Problemowe. Badania Nieniszczące, Nr 6 (2001), s. 165- 170.
  • [19] Roskosz M. (2005). Zastosowanie metody magnetycznej pamięci metalu do badań wirników sprężarek. Problemy i innowacje w remontach energetycznych. PIRE 2005. VIII Konferencja naukowo-techniczna, Szklarska Poręba, s. 259-270.
  • [20] Shi, Ch-L., Dong, Sh-Y., He, P. & Xu, B-Sh. (2008). Influence of Stress Concentration Factor on Magnetic Memory Effect of Steel Samples under Dynamic Tension Load. 17th World Conference on Nondestructive Testing, 25-28 Oct 2008, Shanghai, China.
  • [21] Witoś, M., Wiśnoch, M. (2009). Metoda magnetycznej pamięci metalu w diagnozowaniu techniki lotniczej. XV Seminarium „Nieniszczące badania materiałów”, 10-13 marca 2009, Zakopane. (http://www.ndt-imbn.com/portal)
  • [22] Shaniavski, A.A. (2007). Modeling of fatigue cracking of metals. Synergetics for aviation. Publishing House of Scientific and Technical Literature “Monography”, Ufa (ros.).
  • [23] Shaniavski, A.A. (2003). Tolerance Fatigue of Aircraft Components. Synergetics in engineering applications. Publishing House of Scientific and Technical Literature “Monography”, Ufa (ros.).
  • [24] Murakami, Y., Nomoto, T. & Ueda, T. (1999). Factors Influencing the Mechanism of Superlong Fatigue Failure in Steels. Fatigue and Fracture of Engineering Materials and Structures. Vol. 22, pp. 581-590.
  • [25] Murakami, Y., Takada, Y. & Toriyama, T. (1998). Super-long life tension-compression fatigue properties of quenched and tempered 0.46%C steel. International Journal of Fatigue. Vol. 16, pp. 661-667.
  • [26] Sakai, T. (2009). Review and prospects for current studies on Very High Cycle Fatigue of metal materials for machine structural use. Journal of Solid Mechanics and Materials Engineering. 3(3), 425-439.
  • [27] Witek, L. (2009). Experimental crack propagation analysis on the compressor blades working in high cycle fatigue condition. In A. Niepokólczycki (editor), Fatigue of Aircraft Structures Monographic Series (pp.195-204) Poland, Warsaw: Institute of Aviation Scientific Publications.
  • [28] http://www.polytec.com
  • [29] http://www.mtiintruments.com
  • [30] www.vibrationresearch.com/software
  • [31] Witoś, M. (2010). Increasing the durability of turbine engine components through active diagnostics and control. Research works of AFIT, Issue 29 (pol.)
  • [32] Ostrovsky, L.A., Johnson, P.A. (2001). Dynamic nonlinear elasticity in geomaterials. Revista del Nuovo Cimento. 24(7), 1-46. http://www.lanl.gov/orgs/ees/ees11/ geophysics/ nonlinear/2001/nrc8730.pdf
  • [33] Ferreira, J. V. (1998). Dynamic Response Analysis of Structure with Nonlinear Components. Thesis, University of London.
  • [34] Buch, A. (1964). Zagadnienia wytrzymałości zmęczeniowej. Warszawa: PWN.
  • [34] Tae-Kyu Lee, J.W. Morris, Jr., Seungkyun Lee & J. Clarke. Detection of fatigue damage prior to crack initiation with scanning SQUID microscopy. Review of Progress in Quantitative Nondestructive Evaluation, Vol. 25.
  • [35] Altherton, D.L., Jiles, D.C. (1986). Effects of stress on magnetization. NDT International. 19(1), pp. 15-19.
  • [36] Własow, W.T., Dubow, A.A. (2007). Fizyczeskaja teoria procesa „deformacija- razruszenije. Czast I. Fiziczeskije kriterii predelnych sostojanij metałła. Moskwa.
  • [37] Birss, R.R., Faunce, C.A. (1971). Stress-Induced Magnetization in Small Magnetic Fields. Journal de Physique, Colloque C I, supplément au no 2-3, Tome 32, Février-Mars, page C 1 – 686-688.
  • [38] Robertson, I.M. (1991). Magneto-Elastic Behaviour of Steels for Naval Applications, MRL Technical Report, DSTO Materials Research Laboratory. (MRL-TR-90-27)
  • [39] Atherton D.L., Sudersena Rao, T., de Sa V., Schönbachler M. (1988). Thermodynamic Correlation Tests Between Magnetostrictive and Magnetomechanical Effects in 2% Mn Pipeline Steel. IEEE Transactions on Magnetics. 24(5), pp. 2177-2180.
  • [40] De Silva, C.W. (2007). Vibration Damping, Control and Design. Taylor & Francis
  • [41] Blanter, M.S., Golovin, I.S., Neuhäuser, H. & Sinning, H.-R. (2007). Internal Friction in Metallic Materials. A Handbook. Berlin: Springer-Verlag.
  • [42] Gui, Y.S., Wirthmann, A., Macking, N., Hu, C.-M. (2009). Direct measurements of nonlinear ferromagnetic damping via the intrinsic foldover effect. Phys. Rev. B80, 060402(R)
Uwagi
EN
The study has been prepared under the research project no. ON 504000534 funded by the Ministry of Science and Higher Education in the years 2008–2010.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-fc8784d7-ded7-478b-bd4f-10d6cb171b75
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.