Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Estimation of distribution of moving heat source during milling of AISIH13 by inverse heat conduction method

Treść / Zawartość
Warianty tytułu
Języki publikacji
This study presents an inverse heat transfer method to estimate the time history of a local heat flow into the work-piece during milling of AISIH13 with considering a 3D thermal model. Temperatures are measured using thermocouples within the work-piece providing input data for the inverse solver. The conjugate gradient method is used as an inverse solver to predict the local time dependent heat flow distribution on the cutting surfaces as well as the temperature distribution in the work-piece. A moving point heat source and a moving plane heat source with different heat source velocity is considered to investigate their influence on the estimated heat flow. Results indicate a good agreement between the experimental and estimated data with an average root mean square error less than 0.2 ◦C. It can be observed that the heat flow distribution is a function of heat source geometry, cutting speed and feed rate, but the temperature distribution is a weak function of geometry of the moving heat source. Changes of temperature with depth are studied. This study suggests that the developed inverse model can be successfully applied for estimating the heat flow and thermal field in the work-piece during milling.
Opis fizyczny
Bibliogr. 16 poz., rys., tab.
  • Mechanical Engineering Department, Arak University of Technology, Arak, Iran
  • 1. Akbari M., Sinton D., Bahrami M., 2009, Moving heat sources in a half space: effect of source geometry, Proceedings of the ASME 2009 Heat Transfer Summer Conference HT2009
  • 2. Beck J.V., Blackwell B., Clair C.S., 1985, Inverse Heat Conduction: Ill-Posed Problems, Wiley-Interscience, New York, NY, USA
  • 3. Carvalho S.R., Lima e Silva S.M.M., Machado A.R., Guimaraes G., 2006, Temperature determination at the chip-tool interface using an inverse thermal model considering the tool and tool holder, Journal of Materials Processing Technology, 179, 1, 97-104
  • 4. Farahani S.D., Bijarchi M.A., Kowsary F., Ashjaee M., 2016, Optimization arrangement of two pulsating impingement slot jets for achieving heat transfer coefficient uniformity, Journal of Heat Transfer, 138, 10, 102-110
  • 5. Farahani S.D., Kowsary F., Jamili J., 2014, Direct estimation local convective boiling heat transfer coefficient in mini channel by using conjugated gradient method with adjoint equation, International Communication of Heat and Mass Transfer, 55, 1-7
  • 6. Farahani S.D., Sefidgar M., Kowsary F., 2011, Estimation of kinetic parameters of composite materials during the cure process by using wavelet transform and mollification method, International Communications in Heat and Mass Transfer, 38, 9, 1305-1311
  • 7. Gostimirović M., Sekulić M., Kopac J., Kovac P., 2011, Optimal control of work-piece thermal state in creep-feed grinding using inverse heat conduction analysis, Strojniski Vestnik – Journal of Mechanical Engineering, 57, 10, 730-738
  • 8. Huang C.H., Jan L.C., Li R., Shih A.J., 2007, A three-dimensional inverse problem in estimating the applied heat flow of a titanium drilling-theoretical and experimental studies, International Journal of Heat and Mass Transfer, 50, 17, 3265-3277
  • 9. Jeager J.C., 1942, Moving sources of heat and temperature at sliding contacts, Processding of Royal Society, New South Wales, 76, 203-224
  • 10. Kowsary F., Farahani S.D., 2010, The smoothing of temperature data using the mollification method in heat flow estimating, Numerical Heat Transfer, Part A: Applications, 58, 3, 227-246
  • 11. Lazard M., Corvisier P., 2005, Inverse method for transient temperature estimation during machining, Proceedings of the 5th International Conference on Inverse Problems in Engineering: Theory and Practice
  • 12. Luchesi V.M., Coelho R.T., 2012, An inverse method to estimate the moving heat source in machining process, Applied Thermal Engineering, 45, 64-78
  • 13. Putz M., Schmidt G., Semmler U., Dix M., Braunig M., Brockmann M., Gierlings S., 2015, Heat flow in cutting: importance, simulation and validation, Procedia CIRP, 31, 334-339
  • 14. Shokrani A., Dhokia V., Newman S.T., 2012, Environmentally conscious machining of difficult-to-machine materials with regard to cutting fluids, International Journal of Machine Tools and Manufacture, 57, 83-101
  • 15. Tai B.L., Stephenson D.A., Shih A.J., 2012, An inverse heat transfer method for determining work-piece temperature in minimum quantity lubrication deep hole drilling, Journal of Manufacturing Science and Engineering, 134, 2, 206-210
  • 16. Veiga C., Davim J.P., Loureiro A.J.R., 2013, Review on machinability of titanium alloys: the process perspective, Reviews on Advanced Materials Science, 34, 148-164
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.