Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Enhanced Energy Recovery of a Vibration Absorber Using Dual Harvester Systems

Warianty tytułu
Języki publikacji
This work proposes a novel type of a pendulum harvester-absorber system (HAS) designed for simultaneously vibration suppression and an energy recovery. The HAS system consists of a four crucial parts: a main system (oscillator), a vibration absorber (pendulum), a magnetic levitation (maglev) harvester and a rotatory energy generator. The first harvester device induced energy results from relative motion between a magnet and a coil. The second harvester is mounted in a pendulum suspension and consists of a stator and a rotor. The motion of the pendulum causes energy induction. The main aim of the paper is compare energy recovery from both harvester systems and analysis influence of load resistance on both harvester devices.
Opis fizyczny
Bibliogr. poz.13, il., rys., tab., wykr.
  • Lublin University of Technology, Department of Applied Mechanics
  • 1. Adhikari, S., Friswell, M., and Inman, D. (2009). Piezoelectric energy harvesting from broadband random vibrations. Smart Materials and Structures, 18(11):115005.
  • 2. Bernal, A. A. and García, L. L. (2012). The modelling of an electromagnetic energy harvesting architecture. Applied Mathematical Modelling, 36(10):4728–4741.
  • 3. Doedel, E., Oldeman, B., A., C., Dercole, F., Fairgrieve, T., Kuznetsov, Y., Paenroth, R., Sandstede, B., Wang, X., , and Zhang, C. (2011). Auto-07p: Continuation and bifurcation software for ordinary differential equations. Concordia University, Montreal, Canada.
  • 4. Hunt, J. B. (1979). Dynamic vibration absorbers. Mechanical engineering publications.
  • 5. Kecik, K. and Mitura, A. (2016). Non-linear dynamics of a vibration harvest-absorber system. Springer Proceedings in Mathematics & Statistics, Dynamical Systems: Modelling, 181:297–306.
  • 6. Kecik, K., Mitura, A., and Warmiński, J. (2013). Efficiency analysis of an autoparametric pendulum vibration absorber. Eksploatacja i Niezawodność-Maintenance and Reliability, 15(3):221–224.
  • 7. Mann, B. and Sims, N. (2009). Energy harvesting from the nonlinear oscillations of magnetic levitation. Journal of Sound and Vibration, 319(1):515–530.
  • 8. Mitura, A. and Kecik, K. (2016). Influences of system parameters on energy harvesting from autoparametric absorber. numerical research. Vibrations in Physical Systems, 27:287–292.
  • 9. Olaru, R., Gherča, R., and Petrescu, C. (2014). Analysis and design of a vibration energy harvester using permanent magnets. Revue Roumaine Des Sciences Techniques - Serie Electrotechnique Et Energetique, 59(2):131–140.
  • 10. Régis, V. (2010). Tuning methodology of nonlinear vibration absorbers coupled to nonlinear mechanical systems. PhD Thesis, University of Liège.
  • 11. Sado, D. and Pietrzakowski, M. (2010). Dynamics of thermally activated shape memory alloy autoparametric systems with two pendulums. International Journal of Non-Linear Mechanics, 45(9):859–865.
  • 12. Sado, D., Pietrzakowski, M., and Gajos, K. (2014). Pseudoelastic effect in autoparametric non-ideal system with sma spring. Dynamical Systems, Theoretical & Applied Mechanics Letters, 2(4).
  • 13. Warminski, J. and Kecik, K. (2012). Autoparametric vibrations of a nonlinear system with a pendulum and magnetorheological damping. In Nonlinear Dynamic Phenomena in Mechanics, pages 1–61. Springer.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.