Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-f6f8b915-7bbb-46ab-9c57-e090ac2c6d73

Czasopismo

Infrastruktura i Ekologia Terenów Wiejskich

Tytuł artykułu

The efficiency of filtration materials (Polonite® and Leca®) supporting phosphorus removal in on site treatment systems with wastewater infiltration

Autorzy Karczmarczyk, A.  Woja, K.  Bliska, P.  Baryła, A.  Bus, A. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
Abstrakty
EN The most of the on site wastewater treatment systems in Poland discharges treated effluent to the soil. The goal of phosphorus (P) reduction from dispersed sources of pollution can be achieved by application of P reactive materials in the construction of wastewater infiltration systems. Two P reactive materials were tested in this study: Polonite® in grains of 2÷6 mm and lightweight aggregate Leca® in grains of 4÷10 mm. Apparent P sorption capacity was assesed on 40.9 mg·g-1 (Polonite®) and 5.1 mg·g-1 (Leca®). Both materials sorbed P-PO4 very fast, after 15 min over 90% of P was removed from solution and wastwater. Wastewater used in this study came from the outlet from the septic tank of on site septic system. P-PO4 solution was prepared from KH2 PO4 and the tap water. In the small column experiment, four collumns (2 filled with Polonite® and 2 filled with Leca®) were fed with wastewater and P-PO4 solution in hydraulic loadings of 30÷40 dm3 ·m-2·d-1. All the columns removed significant amounts of P from both solution and wastewater with the reduction between 28.3% and 72.5%. The mean P-PO4 effluent concentrations ranged from 1.21 mg·dm-3 to 7.12 mg·dm-3. The best overall performance was achieved by the Polonite® fed with solution. Both tested materials can support wastewater treatment in on site systems.
Słowa kluczowe
EN phosphorus   reactive material   on site wastewater treatment   infiltration system  
Wydawca Stowarzyszenie Infrastruktura i Ekologia Terenów Wiejskich
Czasopismo Infrastruktura i Ekologia Terenów Wiejskich
Rocznik 2017
Tom nr IV/1
Strony 1401--1413
Opis fizyczny Bibliogr. 23 poz., rys., tab., wykr.
Twórcy
autor Karczmarczyk, A.
autor Woja, K.
autor Bliska, P.
autor Baryła, A.
  • Warsaw University of Life Sciences - SGGW Department of Environmental Improvement Nowoursynowska 166 02-787 Warszawa, anna_baryla@sggw.pl
autor Bus, A.
  • Warsaw University of Life Sciences-SGGW Department of Environmental Improvement Nowoursynowska 166 02-787 Warszawa, agnieszka_bus@sggw.pl
Bibliografia
Al Duri B. (1996). Adsorption modeling and mass transfer. Chapter 7, in: Use of Adsorbents for the removal of pollutants from wastewaters. Ed. McKay G., CRC Press, 133-173.
Błażejewski R. (2003). Kanalizacja wsi. Polskie Zrzeszenie Inżynierów i Techników Sanitarnych. Oddział Wielkopolski.
Bugajski P. (2009). Zagrożenia wód eutrofizacją w wyniku stosowania indywidualnych systemów oczyszczania ścieków. Gaz, Woda i Technika Sanitarna, wrzesień, 4-5.
Bus A., Karczmarczyk A. (2014). Charakterystyka skały wapienno-krzemionkowej opoki w aspekcie jej wykorzystania jako materiału reaktywnego do usuwania fosforu z wód i ścieków. Infrastruktura i Ekologia Terenów Wiejskich II(1), 227-238.
Cucarella V., Zaleski T., Mazurek R. (2007). Phosphorus sorption capacity of different types of opoka. Ann. Warsaw Univ. of Life Sci. - SGGW, Land Reclam. 38, 11-18.
Cucarella V., Renman G. (2009). Phosphorus sorption capacity of filter materials used for on-site wastewater treatment determined in batch experiments - A comparative study. J. Environ. Qual. 38, 381-392.
Dz.U. 2014 poz. 1800: Rozporządzenie Ministra Środowiska z dnia 18 listopada 2014 r. w sprawie warunków, jakie należy spełnić przy wprowadzaniu ścieków do wód lub do ziemi, oraz w sprawie substancji szczególnie szkodliwych dla środowiska wodnego.
Eveborn D., Gustafsson J.P., Elmefors E., Yu L., Eriksson A-K., Ljung E., Renman G. (2014). Phosphorus in soil treatment systems: accumulation and mobility. Water Research. 64, 42-52.
Halicki W., Szustakowski M. (2003). Wpływ zanieczyszczeń biogennych odprowadzanych ze ściekami do gruntu na jakość wód podskórnych i powierzchniowych. Część I - fosfor. Gospodarka Wodna 1, 22-26.
Hartman J., Robertson W.D., Cherry J.A., Zanini L. (1996). Impacts on a sand aquifer from an old septic system: nitrate and phosphate. Ground Water. 34(6), 1105-1114.
Herrmann I., Jourak A., Hedström A., Lunström T.S., Viklander M. (2013). The effect of hydraulic loading rate and influent source on the binding capacity of phosphorus filters. PLOS ONE 8 (8), 1-8.
Jucherski A., Walczowski A. (2001). Drenaże rozsączające. Oczyszczanie scieków czy odprowadzenie nieoczyszczonych ścieków do gleby? Wiadomości Melioracyjne i Łąkarskie. 3, 131-132.
Jucherski A., Nastawny M., Walczowski A., Jóźwiakowski K., Gajewska M. (2017). Badania przydatności alkalicznych materiałów filtracyjnych do usuwania fosforanów z biologicznie oczyszczonych ścieków bytowych. Ochrona Środowiska. 39(1), 33-38.
Karczmarczyk A., Bus A. (2014). Testing of reactive materials for phosphorus removal from water and wastewater - comparative study. Ann. Warsaw. Univ. of Life Sci. - SGGW, Land Reclam. 46(1), 57-67.
Kholoma E., Renman G., Renman A. (2016). Phosphorus removal from wastewater by field-scale fortified filter beds during a one-year study. Environmental Technology. 37:23, 2953-2963.
Li H., Li Y., Sun T., Wang X. (2012). The use of a subsurface infiltration system in treating campus sewage under variable loading rates. Ecological Engineering. 38, 105-109.
Markowska M., Michałowski M. (2007). Analiza działania małych oczyszczalni scieków w gminie Środa Wielkopolska. Gaz, Woda i Technika Sanitarna. lipiec-sierpień, 34-38.
EPA/625/R-00/008, 2002. Onsite wastewater treatment systems manual. U.S. Environmental Protection Agency.
Vohla C., Põldvere E., Noorvee A., Kuusemets V., Mander Ü. (2005). Alternative filter media for phosphorus removal in a horizontal subsurface flow constructed wetland. J. Environ. Sci. Health A. 40, 1251-1264.
Withers P.J.A., Jarvie H.P., Stoate C. (2011). Quantifying the impact of septic tank systems on eutrophication risk in rural headwaters. Environment International. 37, 644-653.
Withers P.J.A., May L., Jarvie H.P., Jordan P., Doody D., Foy R.H., Bechmann M., Cooksley S., Dils R., Deal N. (2012). Nutrient emissions to water from septic tank systems in rural catchments: Uncertainties and implications for policy. Environmental Science & Policy. 24, 71-82.
Withers P.J.A., Jordan P., May L., Jarvie H.P., Deal N.E. (2014). Do septic tank systems pose a hidden threat to water quality? Front Ecol Environ. 12(2), 123-130.
Zhu T., Jenssen P.D., Mæhlum T., Krogstad T. (1997). Phosphorus sorption and chemical characteristics of light-weight aggregates (LWA)-potential filter media in treatment wetlands. Water Sci. Technol. 35, 103-108.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-f6f8b915-7bbb-46ab-9c57-e090ac2c6d73
Identyfikatory
DOI 10.14597/infraeco.2017.4.1.107