Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Global stability of an aluminum foam stand-alone energy absorber

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Aluminum alloy foam is the commonly used material in energy absorber design due to its excellent ability to dissipate energy in relation to density. This paper investigates the behavior of standalone absorber made of ALPORAS aluminum foam. The limiting parameters in the aforementioned application are the stability of absorber column and the risk of global buckling. Specimens with different slenderness ratio were crushed in order to find the transition point between local collapse of the cell walls and global buckling of the entire column. The ability of the aluminum foam energy absorber to work even after partial global buckling was presented.
Opis fizyczny
Bibliogr. 12 poz., rys., tab., wykr.
  • Wroclaw University of Technology, Faculty of Mechanical Engineering, Lukasiewicza 7/9, 50-371 Wroclaw, Poland,
  • [1] J. Karliński, E. Rusiński, T. Smolnicki, Protective structures for construction and mining machine operators, Automation in Construction 17 (2008) 232–244.
  • [2] S. Ochelski, T. Niezgoda, Parameter selection rules for elements of energy-absorbing structures, Engineering Transactions 57 (2009) 17–34.
  • [3] T. Miyoshi, T. Mukai, K. Higashi, Energy absorption in closed-cell Al–Zn–Mg–Ca–Ti foam, Materials Transactions 43 (7) (2002) 1778–1781.
  • [4] A. Tobota, A. Kopczyński, J. Karliński, Axial crushing of monotubal and bitubal circular foam-filled sections, Journal of Achievements in Materials and Manufacturing Engineering 22 (2007) 71–74.
  • [5] A. Tobota, A. Iluk, P. Kaczyński, Wpływ wypełnienia pianka aluminiowa profili cienkościennych na ich energochłonność, Journal of Transdisciplinary Systems Science 16 (1) (2012) 495–508.
  • [6] A.F. Bastawros, H. Bart-Smith, A.G. Evans, Experimental analysis of deformation mechanisms in a closed-cell aluminum alloy foam, Journal of the Mechanics and Physics of Solids 48 (2000) 301–322.
  • [7] E. Andrews, W. Sanders, L.J. Gibson, Compressive and tensile behaviour of aluminum foams, International Journal of Mechanical Sciences 270 (1998) 113–124.
  • [8] A.G. Hanssen, M. Langseth, O.S. Hopperstad, Static and dynamic crushing of square aluminum extrusions with aluminum foam filler, International Journal of Impact Engineering 24 (2000) 347–383.
  • [9] E.W. Andrews, G. Gioux, P. Onck, L.J. Gibson, Size effects in ductile cellular solids. Part II: experimental results, International Journal of Mechanical Sciences 43 (2001) 701–713.
  • [10] V.S. Deshpande, N.A. Fleck, Isotropic constitutive models for metallic foams, Journal of the Mechanics and Physics of Solids 48 (2000) 1253–1283.
  • [11] A.G. Hanssen, O.S. Hopperstad, M. Langseth, H. Ilstad, Validation of constitutive models applicable to aluminum foams, International Journal of Mechanical Sciences 44 (2002) 359–406.
  • [12] B. Bartczak, D. Gierczycka-Zbrożek, Z. Gronostajski, S. Polak, The use of thin-walled sections for energy absorbing components: a review, Archives of Civil and Mechanical Engineering 10 (4) (2010) 5–19.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.