PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical simulation of catastrophic flood: the case study of hypothetical failure of the Bielkowo hydro-power plant reservoir

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The numerical modeling of flood wave propagation following the hypothetical breaks of the embankments of the Bielkowo hydro-power plant storage reservoir (Kolbudy II Reservoir) on the Radunia River in Poland has been presented. The results of computations were used to estimate the parameters of the flood waves, which are indispensable for the flood zone determination and mapping and then for the flood risk analysis. When estimating the reach and area of the inundation, related to the embankments failures, digital terrain model, and mathematical model of flood wave propagation are necessary. For the numerical simulations of flood, the mathematical model of free surface, two-dimensional unsteady water flow was applied. Four locations of potential breaks of the reservoir embankments were considered. The computed flood zones were presented on the flood hazard maps. The maps have been used by the local authorities and the dam owner to manage the flood risk related to hydro-power plants operations on the Radunia River. This type of research has been done for the first time for the water plant managed by the ENERGA Elektrownie Straszyn.
Czasopismo
Rocznik
Strony
1229--1245
Opis fizyczny
Bibliogr. 20 poz.
Twórcy
  • Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Gdańsk, Poland
  • Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Gdańsk, Poland
autor
  • Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Gdańsk, Poland
Bibliografia
  • 1. Abbott, M.B. (1979), Computational Hydraulics: Elements of the Theory of Free-Surface Flows, Pitman Publ. Ltd., London.
  • 2. Chanson, H. (2004), The Hydraulics of Open Channel Flow: An Introduction, 2nd ed., Elsevier, Oxford.
  • 3. Cunge, J.A., F.M. Holly, and A. Verwey (1980), Practical Aspects of Computational River Hydraulics, Pitman Publ. Ltd., London.
  • 4. Fread, D.L. (1988), BREACH: An erosion model for earthen dam failures, National Weather Service, Office of Hydrology, Report, NOAA, Silver Spring, USA.
  • 5. Fread, D.L. (1993), NWS FLDWAV model: The replacement of DAMBRK for dam-break flood prediction. In: Proc. 10th Annual ASDSO Conference “Dam Safety’ 93”, 26–29 September 1993, Kansas City, USA, Association of State Dam Safety Officials, Lexington, 177–184.
  • 6. Gutry-Korycka, M., A. Magnuszewski, J. Suchożebrski, W. Jaworski, M. Marcinkowski, and M. Szydłowski (2006), Numerical estimation of flood zones in the Vistula River valley, Warsaw, Poland. In: Congrès “Climate Variability and Change — Hydrological Impacts”, IAHS Publ., No. 308, 191–195.
  • 7. Jarzębińska, T. (2005), Hydraulic power plants on the Radunia River. In: Proc. 25th Int. School of Hydraulics “Open Channels Flows in View of Water Framework Directive”, Institute of Hydro-Engineering, Polish Academy of Sciences, Gdańsk.
  • 8. Kalinowska, M.B., P. Rowiński, J. Kubrak, and D. Mirosław-Świątek (2012), Scenarios of the spread of a waste heat discharge in a river — Vistula river case study, Acta Geophys. 60,1, 214–231, DOI: 10.2478/s11600-011-0045-x.
  • 9. LeVeque, R.J. (2002), Finite Volume Methods for Hyperbolic Problems, 2nd ed., Cambridge Texts in Applied Mathematics, Vol. 31, Cambridge University Press, Cambridge, 578 pp.
  • 10. Majewski, W., T. Jarzębińska, E. Jasińska, and E. Wołoszyn (2005), Characteristics of the Radunia River and its Catchment in View of WFD. In: Proc. 25th Int. School of Hydraulics “Open Channels Flows in View of Water Framework Directive”, Institute of Hydro-Engineering of Polish Academy of Sciences, Gdańsk.
  • 11. Morris, M.W. (2000), CADAM: concerted action on dambreak modelling, Final Rep. SR571, Wallingford.
  • 12. Néelz, S., and G. Pender (2007), Sub-grid scale parameterisation of 2D hydrodynamic models of inundation in the urban area, Acta Geophys. 55,1, 65–72, DOI: 10.2478/s11600-006-0039-2.
  • 13. Potter, D. (1973), Computational Physics, John Wiley and Sons, London.
  • 14. Roe, P.L. (1981), Approximate Riemann solvers, parameter vectors, and difference schemes, J. Comput. Phys. 43,2, 357–372, DOI: 10.1016/0021-9991(81)90128-5.
  • 15. Szydłowski, M. (2006), Mathematical modelling of flash floods in natural and urban areas. In: J. Marsalek, G. Stancalie, and G. Balint (eds.), Transboundary Floods: Reducing Risks Through Flood Management, Nato Science Series: IV: Earth and Environmental Sciences, Vol. 72, Springer, Dordrecht, 143–153, DOI: 10.1007/1-4020-4902-1_14.
  • 16. Szydłowski, M. (2007), Representation of a build-up area in numerical simulation of urban flash flooding, Arch. Hydro-Eng. Environ. Mech. 54,4, 285–298.
  • 17. Szydłowski, M. (2011), Application of hydrodynamics model for a case study of the Kolbudy II reservoir embankment hypothetical failure. In: P. Rowiński (ed.), Experimental Methods in Hydraulic Research, Geoplanet: Earth and Planetary Sciences, Vol. 1, Springer, Berlin Heidelberg, 299–306, DOI: 10.1007/978-3-642-17475-9_22.
  • 18. Tan, W. (1992), Shallow Water Hydrodynamics, Elsevier Oceanography Series, Vol. 55, Elsevier, Amsterdam.
  • 19. Toro, E.F. (1997), Riemann Solvers and Numerical Methods for Fluid Dynamics, Springer, Berlin.
  • 20. Wahl, T.L. (2004), Uncertainty of predictions of embankment dam breach parameters, J. Hydraul. Eng. 130,5, 389–397, DOI: 10.1061/(ASCE)0733-9429(2004)130:5(389).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f50c8c7c-652a-4876-b861-b6703ef6609a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.