Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
cannonical link button


Geological Quarterly

Tytuł artykułu

Susceptibility of various tektite types to fluvial abrasion

Autorzy Brachaniec, Tomasz 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
EN Tektites are glass bodies, rich in sill ca, resulting from the impact of a large bolide into ground rocks. Similar to other impactites they are prone to erosive processes, including fluvial abrasion. This study reports the results of an experimental tumbling that aimed at estimating the potential distance that tektites from different strewn fields (moldavites, bediasites and indochinites) and Libyan Desert Glass (LDG) can withstand depending on the experimental conditions. The present study consisted of 15 cycles, in which the type of sample deposits (i.e. sand/gravel ratio) and computed transport velocity were changed, the latter being estimated at 2.5-6.5 km/h. The results clearly confirm the susceptibility of tektites to abrasion during tumbling. None of the tektites withstood the estimated distance of 12 km during the experiment, but this may have been the result of the relatively small initial size of the glasses (~1.5 g). These experiments document that LDG, despite its even smaller initial size in the experiments, can resist abrasion and fragmentation better than the tektites, thus, could probably be transported farther in a stream environment. This is most likely caused by a much higher silica content in relation to the tektites from other groups. The estimated max I mum transport distances, over which moldavites, bediasites and indochinites survived in the experiments, are all very similar. The greatest weight loss for all the specimens was found after the first estimated 2 km of tumbling. This is undoubtedly caused by the irregular initial shape of the tektites and LDG. Subsequent observations recorded minor weight losses, in association with more and more rounded glass shapes. The results of the study should be treated only as a general scheme for the fluvial abrasion of tektites, due to the inability to accurately reproduce the natural fluvial environment.
Słowa kluczowe
EN tektites   reworking   abrasion   redeposition   river   gravel  
Wydawca Państwowy Instytut Geologiczny - Państwowy Instytut Badawczy
Czasopismo Geological Quarterly
Rocznik 2019
Tom Vol. 63, No. 1
Strony 150--161
Opis fizyczny Bibliogr. 55 poz., rys., tab., wykr.
autor Brachaniec, Tomasz
  • University of Silesia; Faculty of Earth Sciences, Department of Geochemisty, Mineralogy and Petrography, Będzińska 60, 41-200 Sosnowiec, Poland,
1. Amare, K., Koeberl, C., 2006. Variation of chemical composition in Australasian tektites from different localities in Vietnam. Meteoritics and Planetary Science, 41: 107-123.
2. Bouška, V., 1964. Geology and stratigraphy of moldavite occurrences. Geochimica et Cosmochimica Acta, 28: 921-922.
3. Bouška, V., Kadlec, J., Žak, K., 1999. Moldavite aus dem westlichen und dem nordlichen Teil Bohmen. Staatliches Museum für Mineralogie und Geologie, Dresden, 10: 16-19.
4. Brachaniec, T., 2017. The most distal moldavite findings from Lower Silesia, Poland. Carnets de Géologie, 17: 139-144.
5. Brachaniec, T., 2018a. An experimental model for the tektite fluvial transport based on the most distal Polish moldavite occurrences. Meteoritics and Planetary Science, 53: 505-513.
6. Brachaniec, T., 2018b. Variations in fluvial reworking of polish moldavites induced by hydrogeological change. Carnets de Geologie, 18: 225-232.
7. Brachaniec, T., Karwowski, Ł., Szopa, K., 2014a. Spherules associated with the Cretaceous-Paleogene boundary in Poland. Acta Geologica Polonica, 64: 99-108.
8. Brachaniec, T., Szopa, K., Karwowski, Ł., 2014b. Discovery of the most distal Ries tektites found in Lower Silesia, southwestern Poland. Meteoritics and Planetary Science, 49: 1315-1322.
9. Brachaniec, T., Szopa, K., Karwowski, Ł., 2015. A new discovery of parautochthonous moldavites in southwestern Po land, Central Europe. Meteoritics and Planetary Science, 50: 1697-1702.
10. Brachaniec, T., Szopa, K., Karwowski, Ł., 2016. New moldavites from SW Poland. Acta Geologica Polonica, 66: 99-105.
11. Buchner, E., Schmieder, M., 2009. Multiple fluvial reworking of impact ejecta - a case study from the Ries crater, southern Germany. Meteoritics and Planetary Science, 44: 1051-1060.
12. Chaussidon, M., Koeberl, C., 1995. Bo ton content and isotopic composition of tektites and impact glasses: constraints on source regions. Geochimica et Cosmochimica Acta, 59: 613-624.
13. Clayton, P.A., 1933. Silica-glass from the Libyan Desert. Geographical Journal, 82: 375-377.
14. Fiske, P.S., Schnetzler, C.C., McHone J.F., Chanthavaichith, K.K., Homsombath, I., Phouthakayalat, T., Khenthavong, B., Xuan, P.T., 1999. Layered Tektites of Southeast Asia: results of 1998 expedition to Laos and Vietnam. 30th Annual Lunar and Planetary Science Conference, Houston, abstract no. 1937.
15. Giuli, G., Cicconi, M.R., Eeckhout, S.G., Pratesi, G., Paris, E., Folco, L., 2014. Australasian microtektites from Antarctica: XAS determination of the Fe oxidation state. Meteoritics and Planetary Science, 49: 696-705.
16. Glass, B.P., 1982. Tektites. Cambridge University Press.,New York.
17. Glass, B.P., Simonson, B.M., 2012. Distal impact ejecta layers: spherules and more. Elements, 8: 43-48.
18. Glass, B.P., Simonson, B.M., 2013. Distal Impact Ejecta Layers. A Record of Large Impacts in Sedimentary Deposits. Impact Studies, Springer, Berlin-Heidelberg.
19. Guzzafame, M., Marino, F., Pugno, N., 2009. The Libyan Desert Silica Glass as a product of meteoritic impact: a new chemical-mechanical characterization. Sahara, 20: 143-146.
20. Haładyj-Waszak, M., 1975. Hydrological yearbook of surface waters (in Polish). The Oder basin and the rivers of the coast region between the Oder and Vistula. Wydawnictwa Komunikacji i Łączności, Warszawa.
21. Haładyj-Waszak, M., 1978. Hydrological yearbook of surface waters (in Polish). The Oder basin and the rivers of the coast region between the Oder and Vistula. Wydawnictwa Komunikacji i Łączności, Warszawa.
22. Haładyj-Waszak, M., 1980. Hydrological yearbook of surface waters (in Polish). The Oder basin and the rivers of the coast region between the Oder and Vistula. Wydawnictwa Komunikacji i Łączności, Warszawa.
23. Hanus, R., Mlčoch, L., Dušek, P., Vítková, M., 2016. Moldavite. Mysterious Tears from Heaven. Granit Publishing. Czech Republic.
24. Jia, Y., Wang, Z., Zheng, X., Li, Y., 2016. A study on limit velocity and its mechanism and implications for alluvial rivers. International Journal of Sediment Research, 31: 205-211.
25. Jimenez-Martinez, N., Ramirez, M., Diaz-Hernandez, R., Rodriguez-Gomez, G., 2015. Fluvial transport model from spatial distribution analysis of Libyan Desert Glass Mass on the great sand sea (Southwest Egypt): clues to primary glass distribution. Geosciences, 5:95-116.
26. Koeberl, C., 1986. Geochemistry of tektites and impact glasses. Annual Review of Earth and Planetary Sciences, 14: 323-350.
27. Koeberl, C., 1990.The geochemistry of tektites: an overview. Tectonophysics, 171: 405-422.
28. Koeberl, C., 1993. Chicxulub crater, Yucatan: tektites, impact glasses, and the geochemistry of target rocks and breccias. Geology, 21:211-214.
29. Koeberl, C., 1994. Tektite origin by hypervelocity asteroidal or cometary impact: target rocks, source craters, and mechanisms. Geological Society of America Special Paper, 293: 133-151.
30. Koeberl, C., 1997. Libyan Desert Glass: geochemical composition and origin. Proceedings of the Silica '96 Meeting, University of Bologna: 121-158.
31. Koeberl, C., Glass, B.P., 1988. Chemical composition of North American microtektites and tektite fragments from Barbados and DSDP Site 612 on the Con tinental slope off New Jersey. Earth and Planetary Science Letters, 87: 286-292.
32. Koeberl, C., Brandstätter, F., Niedemmazr, G., Kurat, G., 1988. Moldavites from Austria. Meteoritics, 23: 325-332.
33. Lange, J.-M., 1995. Lausitzer Moldavite und ihre Fundschichten. Verlag der Gesellschaft für Geowissenschaften 3, Berlin.
34. Lange, J.-M., 1996. Tektite glasses from Lusatia (Lausitz), Germany. Chemie der Erde, 56: 498-510.
35. Magirl, C.S., Gartner, J.W., Smart, G.M., Webb, R.H., 2009. Water velocity and the nature of critical flow in large Rapids on the Colorado River, Utah. Water Resources Research, 45: W05427. doi: 10.1029/2009WR007731
36. Mazer, J.J., Bates, J.K., Bradley, C.R., Stevenson, C.M., 1992. Water diffusion in tektites: an example of the use of natural analogues in evaluating the long-term reaction of glass with water. Journal of Nuclear Materials, 190: 277-284.
37. McCall, G.J.H., 2000. The age paradox revisited. Journal of the Royal Society of Western Australia, 83: 83-92.
38. McCall, G.J.H., 2001. Tektites in the Geological Record. Showers of glass from the sky. The Geological Society, London.
39. Osinski, G.R., Kieniewicz, J., Smith, J.R., Boslough, M.B.E., Eccleston, M., Schwarcz, H.P., Kleindienst, M.R., Haldemann, A.F.C., Churcher, C.S., 2008. The Dakhleh Glass: product of an impact airburst or catering event in the Western Desert of Egypt? Meteoritics and Planetary Science, 43: 2089-2107.
40. Powers, M.C., 1953. A new roundness scale for sedimentary particles. Journal of Sedimentary Petrology, 23:117-119.
41. Řanda, Z., Mizera, J., Frána, J., Kučera, J., 2008. Geochemical characterization of moldavites from a new locality, the Cheb Basin, Czech Republic. Meteoritics and Planetary Science, 43: 461-477.
42. Rodovská, Z., Magna, T., Žák, K., Skála, R., Brachaniec, T., Visscher, C., 2016. The fate of moderately volatile elements in impact events-Lithium connection between the Ries sediments and central European tektites. Meteoritics and Planetary Science, 51: 2403-2415.
43. Schulze, K., Hunger, M., Döll, P., 2005. Simulating river flow velocity on global scale. Advances in Geosciences, 5: 133-136.
44. Shoemaker, E.M., Shoemaker, C.S., 1997. Dispersion of Stones by human transport: a solution to the enigma of Australite 'stratigraphic ages’. EOS: transactions of the American Geophysical Union, 78: 201.
45. Shoemaker, E.M., Uhlherr, H.R., 1999. Stratigraphic relations of australites in the Port Campbell embayment, Victoria. Meteoritics and Planetary Science, 34: 369-384.
46. Simmons, R., Ahsian, N., 2007. The Book of Stones: Who They Are and What They Teach. Heaven and Earth Publishing LLC, Berkeley.
47. Skála, R., Strnad, L., McCammon, C., Čada, M., 2009. Moldavites from the Cheb Basin, Czech Republic. Geochimica et Cosmochimica Acta, 73: 1145-1179.
48. Skála, R., Jonášová, S., Žák, K., Ďurišová, J., Brachaniec, T., Magna, T., 2016. New constraints on the Polish moldavite finds: a separate sub-strewn field of the central European tektite field or re-deposited materials? Journal of Geosciences, 61: 171-191.
49. Szopa, K., Brachaniec, T., Szczyrba, M., 2015. Chemistry and mineral inclusions in the Libyan Desert Glass: preliminary SEM and EMPA investigation (in Polish with English summary). Acta Societatis Metheoriticae Polonorum, 6: 103-106.
50. Szopa, K., Badura, J., Brachaniec, T., Chew, D., Karwowski, Ł., 2017. Origin of parautochthonous Polish moldavites-a palaeogeographical and petrographical study. Annales Societatis Geologorum Poloniae, 87: 1-12.
51. Trnka, M., Houzar, S., 2002. Moldavites: a review. Bulletin of the Czech Geological Survey, 77: 283-302.
52. Werner, T., Borradaile, G.J., 1998. Homogeneous magnetic susceptibilities of tektites: implications for extreme homogenization of source material. Physics of the Earth and Planetary Interiors, 108: 235-243.
53. Yagi, K., Kuroda, Y., Koshimizu, S., 1982. Chemical composition and fission-track age of some Muong Nong-type tektites. Symposium on Antarctic Meteorites, 7th, Tokyo, Japan: 162-170.
54. Ziada, W.M.A.A., 2010. Effect of man-made intervenion on River Nile hydraulic characteristics. A Master Degree Thesis. Benha University. Shoubra Faculty of Engineering. Cairo, Egypt.
55. Žebera, K., 1972. Vltaviny v katastrofalnich přivalovych sedimentech u Prahy (in Czech). Geologicky Průzkum, 14: 54-56.
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-f4b8f1ff-1571-441d-9bd1-784412c196b3
DOI 10.7306/gq.1461