PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Coupled dynamic FE analysis of permanent-magnet mechanical vibration energy harvesting converter

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
Computer Applications in Electrical Engineering (18-19.04.2016 ; Poznań, Polska)
Języki publikacji
EN
Abstrakty
EN
The paper presents a coupled dynamic mechanical-electromagnetic finite element analysis of a vibration energy harvesting converter with permanent-magnet excitation. The system consists of a small, miliwatt power range, linear-motion permanent-magnet generator connected to a cantilever-beam spring element. The finite element equations derived for the mechanical part of the system according to the 1-D Timoshenko beam theory are coupled strongly with equations describing the 2-D distribution of magnetic field in the generator and those associated with the electric circuit. The time-stepping procedure based on the Crank-Nicolson discretisation schema is applied to the obtained system of differential-algebraic equations. The model is shown to provide satisfactory predictions of the system dynamic performance which is confirmed experimentally.
Rocznik
Tom
Strony
245--254
Opis fizyczny
Bibliogr. 11 poz., rys.
Twórcy
autor
  • Opole University of Technology
autor
  • Opole University of Technology
Bibliografia
  • [1] Beeby S.P., Torah R.N., Tudor M.J., Glynne-Jones P., O'Donnell T., Saha C.R., Roy S., A micro electromagnetic generator for vibration energy harvesting, Journal of Micromechanics and Microengineering, Vol. 17, no. 7, 2007, pp. 1257-1265.
  • [2] Sato T., Watanabe K., Igarashi H., Coupled Analysis of Electromagnetic Vibration Energy Harvester With Nonlinear Oscillation, IEEE Transactions on magnetics, Vol. 50, no. 2, 2014, pp. 313-316.
  • [3] Rahman M.F.A., Kok S.L., Ali N.M., Hamzah R.A., Aziz K.A.A., Hybrid Vibration Energy Harvester Based On Piezoelectric and Electromagnetic Transduction Mechanism, IEEE Conf. Clean Energy and Technology, 2013, pp. 243-247.
  • [4] Lee J., Yoon S.W., Optimization of Magnet and Back-Iron Topologies in Electromagnetic Vibration Energy Harvesters, IEEE Trans. Magn., Vol. 51, no. 6, 2015, pp. 1-7.
  • [5] Qiu J., Wen Y., Li P., Chen H., Design and Optimization of a Tunable Magnetoelectric and Electromagnetic Hybrid Vibration-Based Generator for Wireless Sensor Networks, IEEE Trans. on magn., vol. 51, no. 11, paper no. 8203804, 2015.
  • [6] Liu X., Qiu J., Chen H., Xu X., Wen Y., Li P., Design and Optimization of an Electromagnetic Vibration Energy Harvester Using Dual Halbach Arrays, IEEE Trans. on magn., Vol. 51, no. 11, paper no. 8204204, 2015.
  • [7] Ferreira A.J.M., Solid mechanics and its applications Vol. 157: Matlab codes for finite element analysis, Springer, Netherlands, 2009.
  • [8] Lalanne C., Mechanical Vibration and Shock, Vol. 1: Sinusiodal Vibration, Taylor & Francis, New York, 1999.
  • [9] Demenko A., Sykulski J.K., Network equivalents of nodal and edge elements in electromagnetics, IEEE Trans. Magn., Vol. 38, no. 2, 2002, pp. 1305-1308.
  • [10] Demenko A., Mendrela E.A., Szelag W., Finite element analysis of saturation effects in tubular linear generator, The International Journal for Computation and Mathematics in Electrical and Electronic Engineering COMPEL, Vol. 25, no. 1, 2006, pp. 43-54.
  • [11] Buffa A., Maday Y., Rapetti F., Calculation of eddy currents in moving structures by a sliding mesh-finite element method, IEEE Trans. Magn., Vol. 36, 2000, pp. 1356-1359.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f3609820-816a-4e25-bab2-86f926b96b5e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.