Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button


Opto - Electronics Review

Tytuł artykułu

Gaussian beam evolution in longitudinally and transversely inhomogeneous nonlinear fibres with absorption

Autorzy Berczynski, P. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
EN The method of complex geometrical optics (CGO) is presented, which describes Gaussian beam (GB) diffraction and self-focusing in smoothly inhomogeneous and nonlinear Kerr type and saturable fibres. CGO reduces the problem of Gaussian beam evolution in inhomogeneous and nonlinear media to the system of the first order ordinary differential equations for the complex curvature of the wave front and for GB amplitude, which can be readily solved both analytically and numerically. As a result, CGO radically simplifies the description of Gaussian beam diffraction and self-focusing effects as compared to other methods of nonlinear optics such as variational method approach, method of moments and beam propagation method. The power of CGO method is presented on the example of Gaussian beam propagation in saturable fibres with either focusing and defocusing refractive profiles. Besides, the influence of initial curvature of the wave front, phenomenon of weak absorption and effect of either transverse and longitudinal inhomogeneity on GB propagation in nonlinear fibres is discussed in this paper.
Słowa kluczowe
EN Gaussian beam diffraction and self-focusing   complex geometrical optics   inhomogeneous and nonlinear saturable fibres  
Wydawca Wojskowa Akademia Techniczna im. Jarosława Dąbrowskiego
Czasopismo Opto - Electronics Review
Rocznik 2013
Tom Vol. 21, No. 3
Strony 303--319
Opis fizyczny Bibliogr. 37 poz., wykr.
autor Berczynski, P.
1. Y. A. Kravtsov, “Complex rays and complex caustics”, Radiophys. Quantum El. 10, 719-730 (1967).
2. J. B. Keller and W. Streifer, “Complex rays with application to Gaussian beams”, J. Opt. Soc. Am. 61, 40-43 (1971).
3. G. A. Deschamps, “Gaussian beam as a bundle of complex rays”, Electron. Lett. 7, 684-685 (1971).
4. Y. A. Kravtsov, G. W. Forbes, and A. A. Asatryan, “Theory and applications of complex rays, in Progress in Optics”, edited by E.Wolf 39, pp. 3-62, Amsterdam, 1999.
5. S. J. Chapman, J. M. Lawry, J. R. Ockendon, and R. H. Tew, “On the theory of complex rays”, SIAM Review 41, 417-509 (1999).
6. Yu. A. Kravtsov, P. Berczynski. Gaussian beams in inhomogeneous media: a review. Stud. Geophys. Geod. 51(1), 1-36 (2007).
7. Y. A. Kravtsov, “Geometrical Optics in Engineering Physics”, Alpha Science International, UK, 2005.
8. Y. A. Kravtsov and N. Y. Zhu. Theory of diffraction: Heuristic Approaches, Alpha Science International, ISBN 1842653725, (2009).
9. P. Berczynski and Y. A. Kravtsov, “Theory for Gaussian beam diffraction in 2D inhomogeneous medium, based on the eikonal form of complex geometrical optics”, Phys. Lett. A331, 265-268, (2004).
10. P. Berczynski, K. Y. Bliokh, Y. A. Kravtsov, and A. Stateczny, “Diffraction of Gaussian beam in 3D smoothly inhomogeneous media: eikonal-based complex geometrical optics approach”, J. Opt. Soc. Am. A23, 1442-1451 (2006).
11. P. Berczynski, Y. A. Kravtsov, and G. Zeglinski, “Gaussian beam diffraction in inhomogeneous and nonlinear media: analytical and numerical solutions by complex geometrical optics”, Cent. Eur. J. Phys. 6, 603-611, (2008)
12. P. Berczynski, Y. A. Kravtsov, and A. P. Sukhorukov, “Complex geometrical optics of Kerr type nonlinear media”, Physica D: Nonlinear Phenomena 239/5, 241-247 (2010).
13. P. Berczynski, Y. A. Kravtsov, and G. Zeglinski, “Gaussian beam diffraction in inhomogeneous media of cylindrical symmetry”, Optica Applicata 40, 705-718, (2010).
14. P. Berczynski, “Complex geometrical optics of nonlinear inhomogeneous fibres” Journal of Optics 13 035707 (2011).
15. R. K. Luneburg, “Mathematical Theory of Optics”, University of California Press, Berkeley and Los Angeles, 1964.
16. J. Fox, Quasi-Optics, Polytechnic Press, Brooklyn, 1964.
17. H. Kogelnik, “On the propagation of Gaussian beams of light through lenslike media including those with a loss or gain variation”, Appl. Opt. 4, 1562-1569 (1965).
18. H. Kogelnik and T. Li, “Laser beams and resonators”, Appl. Opt. 5, 1550 (1966).
19. V. M. Babich and V. S. Buldyrev, Short-Wavelength Diffraction Theory: Asymptotic Methods, Springer Verlag, Berlin, Heidelberg, 1991.
20. S. A. Akhmanov, R. V. Khokhlov, and A. P. Sukhorukov, “Self-focusing, self-defocusing and self-modulation of laser beams”, in Laser Handbook, F. T. Arecchi and E O. Shulz-Dubois Eds., Vol. 2, pp 1151-1228, Elsevier, New York, 1972.
21. J. A. Arnaud, Beam and Fibre Optics, Academic Press, New York, 1976.
22. M. Sodha and A. Ghatak, Inhomogeneous Optical Wave-guides, Plenum Press, p. 269, 1977.
23. G. Agrawal, Nonlinear Fibre Optics, Academic Press, New York, 1989.
24. S. Sawa, “Propagation of light beam through lens-like media with complex permittivity” IEEE T. Microwave Theory and Techniques MTT-23, 566-575 (1975).
25. L. Casperson, “Beam propagation in tapered quadratic index waveguides: numerical solutions”, J. Lightwave Technology, LT.3, (1985).
26. S. N. Vlasov and V. I. Talanov, “The parabolic equation in the theory of wave propagation (on the 50th anniversary of its publication)”, Radiophys. Quantumn El. 38, B. 1-2, 1-12 (1995).
27. G. V. Permitin and A. I. Smirnov, “Quasioptics of smoothly inhomogeneous isotropic media”, JETP 82, 395-402 (1996).
28. Y. Chen, “Self-trapped light in saturable nonlinear media” Opt. Lett. 16, 4-6 (1991).
29. M. Karlsson, “Optical beams in saturable self-focusing media” Phys. Rev. A46, 2726-2734 (1992).
30. Z. Jovanoski and R. A. Sammut, “Propagation of Gaussian beams in a nonlinear saturable medium”, Phys. Rev. E50, 4087-4093 (1994).
31. C, Denz, M. Schwab and C. Weilnau, “Light propagation in nonlinear optical media”, Chapter 2, Transverse-Pattern Formation in Photorefractive Optics, Vol. 188, pp. 11-48, Springer-Verlag Berlin Heidelberg, 2003.
32. A. Biswas, Theory of non-Kerr law solitons, Appl. Math. Comput. 153, 369-385 (2004).
33. G. V. Pereverzev, Paraxial WKB Solution of a Scalar Wave Equation, Max-Planck-Institut für Plasmaphysik, p. 31, (1993).
34. N. Hodgson and H. Weber, Laser Resonators and Beam Propagation Fundamentals, Advanced Concepts and Applications, Springer Series in Optical Sciences, vol. 108, 2005.
35. A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, p. 848, Oxford University Press, USA, (2006).
36. A. Mendez and T. F. Morse, Specialty Optical Fibres Handbook, Academic Press, p. 798, 2007.
37. K. Davices, Fibre Optics Communication, Springer Series in Optical Sciences, vol. 161, p. 348, 2012.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-f3117608-ec69-47e0-93d2-9e91d07fd816
DOI 10.2478/s11772-013-0099-1