Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
next last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-f1ead1a7-c245-48e3-b590-7c3c7a74da72

Czasopismo

Geological Quarterly

Tytuł artykułu

Groundwater potentiality assessment in an arid zone using a statistical approach and multi-criteria evaluation, southwestern Tunisia

Autorzy Msaddek, Mohamed Haythem  Souissi, Dhekra  Moumni, Yahya  Chenini, Ismail  Bouaziz, Nacira  Dlala, Mahmoud 
Treść / Zawartość http://gq.pgi.gov.pl/gq
Warianty tytułu
Języki publikacji EN
Abstrakty
EN The aim of this paper is to assess the groundwater potentiality using statistical multi-criteria evaluation and AHP (analytic hierarchy process) as an additional method to the hydrogeological research in order to create a map that rep resents the groundwater potentiali ty. The extraction of this map is based on the study of multi-criteria input data, such as lineaments, land use, lithology, drainage, slope, soil, rainfall and geomorphology. Weights were assigned using the AHP method to all these multi-influencing factors according to their influence on groundwater potential. Sensitivity analysis was calculated to validate the AHP weights result. The presented methodology has been applied to the Bouhedma region in southwestern Tunisia, located in an arid climate. This technique revealed that very good, good, moderate and poor groundwater potential zones are spread over 382 km2(26.9%), 437 km2(30.7%), 552 km2(38.8%) and 51 km2(3.6%), respectively. Furthermore, the effect of each influencing factor on groundwater capacity was computed. The results provide significant information and found to be helpful in better planning and management of groundwater resources.
Słowa kluczowe
EN groundwater assessment   AHP   multi-criteria evaluation   arid zone   Tunisia  
Wydawca Państwowy Instytut Geologiczny - Państwowy Instytut Badawczy
Czasopismo Geological Quarterly
Rocznik 2019
Tom Vol. 63, No. 1
Strony 3--15
Opis fizyczny Bibliogr. 60 poz., rys., tab., wykr.
Twórcy
autor Msaddek, Mohamed Haythem
  • UR13ES26, Paléoenvironnement, Géomatériaux et Risques Géologiques, Faculté des sciences de Tunis, Université de Tunis El Manar, 2092, Tunis, Tunisia, mmhaythem@gmail.com
autor Souissi, Dhekra
  • UR13ES26, Paléoenvironnement, Géomatériaux et Risques Géologiques, Faculté des sciences de Tunis, Université de Tunis El Manar, 2092, Tunis, Tunisia
autor Moumni, Yahya
  • UR13ES26, Paléoenvironnement, Géomatériaux et Risques Géologiques, Faculté des sciences de Tunis, Université de Tunis El Manar, 2092, Tunis, Tunisia
autor Chenini, Ismail
  • UR13ES26, Paléoenvironnement, Géomatériaux et Risques Géologiques, Faculté des sciences de Tunis, Université de Tunis El Manar, 2092, Tunis, Tunisia
autor Bouaziz, Nacira
  • University of Mouloud Mammeri of Tizi-Ouzou, Laboratory of Geomaterials Environnement and Developing (LGEA), BP N° 17, 15000, Tizi-Ouzou, Algeria
autor Dlala, Mahmoud
  • UR13ES26, Paléoenvironnement, Géomatériaux et Risques Géologiques, Faculté des sciences de Tunis, Université de Tunis El Manar, 2092, Tunis, Tunisia
Bibliografia
1. Agarwal, C.S., 1998. Study of drainage pattern through aerial data in Naugarh area of Varanasi district, UP. Journal of the Indian Society of Remote Sensing, 26: 169-175.
2. Ahmadi, R., 2006. Utilisation des marqueurs morphologiques, sédimentologiques et microstructuraux pour la validation des moděles cinématiques de plissement (in French). Application a l'Atlas méridional tunisien. Ph.D. thesis. Université des Sciences et des Techniques de Nantes.
3. Al-Adamat, R.A., Foster, I.D., Baban, S.M., 2003. Groundwater vulnerabili ty and risk mapping for the Basaltic aquiter of the Azraq basin of Jordan using GIS, Remote sensing and DRASTIC. Applied Geography, 23: 303-324.
4. Arnold, J.G., Allen, P.M., Bernhardt, G., 1993. A comprehensive surface-groundwater flow model. Journal of hydrology, 142: 47-69.
5. Becker, M.W., 2006. Potential for satellite remote sensing of ground water. Groundwater, 44: 306-318.
6. Bencheikh, N., 2013. Etude des relations hydrodynamiques entre la nappe profonde de Sfax et les systèmes aquifères méridionaux (Menzel Habib et Gabès nord): origine(s) et mécanismes de minéralisation des eaux souterraines (in French). Ph.D. thesis, Ecole Nationale d'Ingénieurs de Sfax. N° 280/13.
7. Blaschke, T., 2010. Obj ect based image analysis for remote sensing. ISPRS journal of photogrammetry and remote sensing, 65: 2-16.
8. Bouwer, H., 2002. Artificial recharge of groundwater: hydrogeology and engineering. Hydrogeology Journal, 10: 121-142.
9. Chenini, I., Ben Mammou, A., 2010. Groundwater recharge study in arid region: an approach using GIS techniques and numerical modeling. Computers and Geosciences, 36: 801-817.
10. Chowdhury, A., Jha, M.K., Chowdary, V.M., Mal, B.C., 2009. Integrated remote sensing and GIS-based approach for assessing groundwater potential in West Medinipur district, West Bengal, India. International Journal of Remote Sensing, 30: 231-250.
11. Dasho, O.A., Ariyibi, E.A., Akinluyi, F.O., Awoyemi, M.O., Adebayo, A.S., 2017. Application of satellite remote sensing to groundwater potential modeling in Ejigbo area, Southwestern Nigeria. Modeling Earth Systems and Environment, 3: 615-633.
12. Davidson, C.E., Ben-David, A., 2011. On the use of covariance and correlation matrices in hyperspectral detection. In Applied Imagery Pattern Recognition Workshop (AIPR), 2011 IEEE. IEEE.
13. Dinesh Kumar, P.K., Gopinath, G., Seralathan, P., 2007. Application of remote sensing and GIS for the demarcation of groundwater potential zones of a river basin in Kerala, southwest coast of India. International Journal of Remote Sensing, 28: 5583-5601.
14. Doell, P., Hoffmann-Dobrev, H., Portmann, F.T., Siebert, S., Eicker, A., Rodell, M., Strassberg, G., Scanlon, B.R., 2012.
15. Impact of water withdrawals from groundwater and surface water on continental water storage variations. Journal of Geodynamics, 59: 143-156.
16. Fenta, A.A., Kifle, A., Gebreyohannes, T., Hailu, G., 2015. Spatial analysis of groundwater potential using remote sensing and GIS-based multi-criteria evaluation in Raya Valley, northern Ethiopia. Hydrogeology Journal, 23: 195-206.
17. Finch, J.W., 1998. Estimating direct groundwater recharge using a simple water balance model-sensitivity to land surface parameters. Journal of Hydrology, 211: 112-125.
18. Ghayoumian, J., Saravi, M.M., Feiznia, S., Nouri, B., Malekian, A., 2007. Application of GIS techniques to determine areas most suitable for artificial groundwater recharge in a coastal aquifer in southern Iran. Journal of Asian Earth Sciences, 30: 364-374.
19. Gustafsson, P., 1993. High resolution satellite data and GIS as a tool for assessment of the groundwater potential of a semi-arid area. Proceedings of the Thematic Conference on Geologic Remote Sensing, Environmental Research Institute of Michigan, 1: 609-609.
20. Hamza, S.M., Ahsan, A., Imteaz, M.A., Ghazali, A.H., Mohamt med, T.A., 2017. GIS-based FRASTIC model for pollution vulnerability assessment of fractured-rock aquifer systems. Environmental Earth Sciences, 76: 197.
21. Harbor, J.M., 1994. A practical method for estimating the impact of land-use change on surface runoff, groundwater recharge and wetland hydrology. Journal of the American Planning Association, 60: 95-108.
22. Hegazy, M.N., Effat, H.A., 2010. Monitoring some environmental impacts of oil industry on coastal zone using different remotely sensed data. The Egyptian Journal of Remote Sensing and Space Science, 13: 63-74.
23. Henchiri, M., 2007. Sedimentation, depositional environment and diagenesis of Eocene biosiliceous deposits in Gafsa basin (southern Tunisia). Journal of African Earth Sciences, 49: 187-200.
24. Groundwater potentiality assessment in an arid zone using a statistical approach and multi-criteria evaluation, southwestern Tunisia 15
25. Jha, M.K., Chowdhury, A., Chowdary, V.M., Peiffer, S., 2007. Groundwater management and development by integrated remote sensing and geographic in formation systems: prospects and constraints. Water Resources Management, 21: 427-467.
26. Kadri, A., Essid, E.M., Merzeraud, G., 2015. “Kasserine Is I and” boundaries variations during the Upper Cretaceous-Eocene (central Tunisia). Journal of African Earth Sciences, 111: 244-257.
27. Kazakis, N., Kougias, I., Patsialis, T., 2015. Assessment of flood hazard areas at a regional scale using an index-based approach and Analytical Hierarchy Process: application in Rhodope- Evros region, Greece. Science of the Total Environment, 538: 555-563.
28. Kourgialas, N.N., Karatzas, G.P., 2011. Flood management and a GIS modelling method to assess flood-hazard areas-a case study. Hydrological Sciences Journal-Journal des Sciences Hydrologiques, 56: 212-225.
29. Kumar, T., Gautam, A.K., Kumar, T., 2014. Appraising the accuracy of GIS-based Multi-criteria decision making technique for delineation of Groundwater potential zones. Water resources manage ment, 28: 4449-4466.
30. Leduc, C., Favreau, G., Schroeter, P., 2001. Long-term rise in a Sahelian water-table: the Continental Terminal in south-west Niger. Journal of hydrology, 243: 43-54.
31. Machiwal, D., Jha, M.K., Mal, B.C., 2011. Assessment of groundwater potential in a semi-arid region of India using remote sensing, GIS and MCDM techniques. Water resources management, 25: 1359-1386.
32. Magesh, N.S., Chandrasekar, N., Soundranayagam, J.P., 2012. Delineation of groundwater potential zones in Theni district, Tamil Nadu, using remote sensing, GIS and MIF techniques. Geoscience Frontiers, 3: 189-196.
33. Mamou, A., 1990. Caractéristiques et évaluation des ressources en eau du Sud tunisien (in French). Ph.D. thesis, University of Paris South, France.
34. Masoud, A., Koike, K., 2006. Tectonic architecture through Landsat-7 ETM+/SRTM DEM-derived lineaments and relationship to the hydrogeologic setting in Siwa region, NW Egypt. Journal of African Earth Sciences, 45: 467-477.
35. Mokadem, N., Boughariou, E., Mudarra, M., Brahim, F.B., Andreo, B., Hamed, Y., Bouri, S., 2018. Mapping potential zones for groundwater recharge and its evaluation in arid environments using a GIS approach: case study of North Gafsa Basin (Central Tunisia). Journal of African Earth Sciences, 141: 107-117.
36. Msaddek, M.H., 2017. Analyse quantitative et qualitative de la fracturation de la région Bouhedma-Ségui, implication hydrogéologique. Ph.D. thesis, University Tunis El Manar. Fac. Sc. Tunis.
37. Msaddek, M.H., Moumni, Y., Chenini, I., Mercier, E., Dlala, M., 2016 Fractures network analysis and interpretation in carbonate rocks using a multi-criteria statistical approach: case study of Jebal Chamsi and Jebal Belkhir, South-western part of Tunisia. Journal of African Earth Sciences, 123: 99-109.
38. Msaddek, M.H., Souissi, D., Moumni, Y., Chenini, I., Dlala, M., 2016 Integrated Multi-criteria evaluation and weighted over lay analysis in assessment of groundwater potentiality in Segui Region, Southern Tunisia. In: Euro-Mediterranean Conference for Environmental Integration: 631-632. Springer, Cham.
39. Mukherjee, P., Singh, C.K., Mukherjee, S., 2012. Delineation of groundwater potential zones in arid region of India - a remote sensing and GIS approach. Water resources management, 26: 2643-2672.
40. Naghibi, S.A., Pourghasemi, H.R., Abbaspour, K., 2018. A compart son between ten advanced and soft comput ng models for groundwater qanat potential assessment in Iran using R and GIS. Theoretical and Applied Climatology, 131: 967-984.
41. Oikonomidis, D., Dimogianni, S., Kazakis, N., Voudouris, K., 2015. A GIS/remote sensing-based methodology for groundwater potentiality assessment in Tirnavos area, Greece. Journal of Hydrology, 525: 197-208.
42. Ozesmi, S.L., Bauer, M.E., 2002. Satellite remote sensing of wetlands. Wetlands ecology and management, 10: 381-402.
43. Rahman, A., 2008. A GIS based DRASTIC model for assessing groundwater vulnerability in shallow aquifer in Aligarh, India. Applied geography, 28: 32-53.
44. Rahmati, O., Haghizadeh, A., Stefanidis, S., 2016. Assessing the accuracy of GIS-based analytical hierarchy process for watershed prioritization, Gorganrood River Basin, Iran. Water resources management, 30: 1131-1150.
45. Razandi, Y., Pourghasemi, H.R., Neisani, N.S., Rahmati, O., 2015. Application of analytical hierarchy process, frequency ratio, and certainty factor models for groundwater potential mapping using GIS. Earth Science Informatics, 8: 867-883.
46. Saaty, T.L., 1980. The Analytic Hierarchy Process. McGraw Hill, New York.
47. Saaty, T.L., 1990. How to make a decision: the analytic hierarchy process. European journal of operational research, 48: 9-26.
48. Saraf, A.K., Choudhury, P.R., 1998. Integrated remote sensing and GISforgroundwater exploration and identification of artificial recharge sites. International journal of Remote sensing, 19: 1825-1841.
49. Scanlon, B.R., Keese, K.E., Flint, A.L., Flint, L.E., Gaye, C.B., Edmunds, W.M., Simmers, I., 2006. Global synthesis of groundwater recharge in semiarid and arid regions. Hydrological Processes: an International Journal, 20: 3335-3370.
50. Selvam, S., Dar, F.A., Magesh, N.S., Singaraja, C., Venkatramanan, S., Chung, S.Y., 2016. Application of remote sensing and GIS for delineating groundwater recharge potential zones of Kovilpatti Municipality, Tamil Nadu using IF technique. Earth Science Informatics, 9: 137-150.
51. Shaban, A., Khawlie, M., Abdallah, C., 2006. Use of remote sensing and GIS to determine recharge potential zones: the case of Occidental Lebanon. Hydrogeology Journal, 14: 433-443.
52. Shahid, S., Nath, S., Roy, J., 2000. Groundwater potential modelling in a soft rock area using a GIS. International Journal of Remote Sensing, 21: 1919-1924.
53. Šilhavý, J., Minár, J., Mentlík, P., Sládek, J., 2016. A new artefacts resistant method for automatic lineament extraction using Multi-Hillshade Hierarchic Clustering (MHHC). Computers and Geosciences, 92: 9-20.
54. Sophocleous, M., 2002. Interactions between groundwater and surface water: the state of the science. Hydrogeology journal, 10: 52-67.
55. Souissi, D., Msaddek, M.H., Zouhri, L., Chenini, I., El May, M., Dlala, M., 2018. Mapping groundwater recharge potential zones in arid region using GIS and Landsat approaches, southeast Tunisia. Hydrological Sciences Journal, 63: 251-268.
56. Yao T.K., 2009. Hydrodynamisme dans les aquiferes de socle cristallin et cristallophyllien du Sud-Ouest de la Côte d'Ivoire: cas du département de Soubré: apports de la télédétection, de la géomorphologie et de l'hydrogéochimie (in French). Océan, Atmosphere. Conservatoire national des arts et métiers - CNAM; Université de Cocody - Côte d'Ivoire.
57. Yeh, H.F., Lee, C.H., Hsu, K.C., Chang, P.H., 2009. GIS for the assessment of the groundwater recharge potential zone. Environmental geology, 58: 185-195.
58. Zargouni, F., 1985. Tectonique de l'Atlas méridional de Tunisie. Evolution géométrique et cinématique des structures en zones de cisaillement (in French). Msc. thesis, Univ. Louis Pasteur, Strasbourg, France.
59. Zouaghi, T., Ferhi, I., Bédir, M., Youssef, M.B., Gasmi, M., Inoubli, M.H., 2011. Analysis of Cretaceous (Aptian) strata in central Tunisia, using 2D seismic data and well logs. Journal of African Earth Sciences, 61: 38-61.
60. Zouari, H., 1995. Evolution géodynamique de l'Atlas centroméridional de la Tunisie. Stratigraphie, analyses géométrique, cinématique et tectono-sédimentaire (in French). Msc. thesis, Univ. Tunis II, Tunisia.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-f1ead1a7-c245-48e3-b590-7c3c7a74da72
Identyfikatory
DOI 10.7306/gq.1451