PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of environmental consequences occurring in the life cycle of a retail facility

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Analiza obciążeń środowiskowych występujących w cyklu życia budynku handlowego
Języki publikacji
EN
Abstrakty
EN
The increasing importance of environmental protection issues has recently forced a low–emission approach to investment processes. To accomplish the European Union's climate, energy and environmental goals, action is needed to achieve high levels of energy efficiency and low environmental damage. Among the energy–intensive sectors, construction deserves a distinction due to its leading share in gross energy consumption in developed countries. Therefore, it is necessary, and at the same time more and more popular, to analyse the environmental loads generated in individual phases and throughout the life cycle of building objects. This subject is also gaining importance in the context of the recent increases in the prices of energy carriers, which forces the search for new construction and exploitation solutions in line with the philosophy of sustainable development and the circular economy. The aim of the analysis was to assess the environmental consequences in the life cycle of a real commercial building located in Janikowo (Kuyavian–Pomeranian Voivodeship), which was carried out using the LCA (Life Cycle Assessment) methodology. The obtained results indicated the dominance of the facility exploitation phase in the level of cumulative environmental loads.
Rocznik
Strony
5--12
Opis fizyczny
Bibliogr. 34 poz., fig., tab.
Twórcy
  • Faculty of Environmental Engineering; Lublin University of Technology; Poland
autor
  • Department of Civil and Environmental Engineering; Lviv Polytechnic National University; Ukraine
Bibliografia
  • 1. Singh R. and Kumar S., "Green Technologies and Environmental Sustainability". Cham: Switzerland, Springer International Publishing; 2017.
  • 2. McLellan B., "Sustainable Future for Human Security". Singapore: Springer Nature Singapore, 2018.
  • 3. Flizikowski J. and Bielinski K., "Technology and Energy Sources Monitoring: Control, Efficiency, and Optimization". USA, IGI Global; 2012.
  • 4. Yang M. and Yu X., "Energy Efficiency: Benefits for Environment and Society". London, Springer; 2015.
  • 5. Sasmal J., "Resources, Technology and Sustainability". Singapore, Springer, 2016.
  • 6. Ekardt F., "Sustainability: Transformation, Governance, Ethics, Law". Cham: Springer International Publishing, 2020.
  • 7. Frankl P. and Rubik F., "Life Cycle Assessment in Industry and Business". Berlin, Heidelberg: Springer, 2000.
  • 8. Piotrowska K. and Piasecka I., "Specification of Environmental Consequences of the Life Cycle of Selected Post-Production Waste of Wind Power Plants Blades", Materials, vol. 4(17), 2021, 4975. https://doi.org/10.3390/ma14174975.
  • 9. Graczyk M. and Rybaczewska-Błażejowska M., "Continual Improvement as a Pillar of Environmental Management", Management, vol 14(1), 2010, pp.297–305.
  • 10. Górzyński J., "Podstawy analizy środowiskowej wyrobów i obiektów". Warszawa: Wydawnictwo WNT, 2007.
  • 11. ISO 14044:2006 - Environmental Management — Life Cycle Assessment — Requirements and Guidelines.
  • 12. ISO 14040:2006 - Environmental Management — Life Cycle Assessment — Principles and Framework.
  • 13. Guinée J., Handbook on Life Cycle Assessment: Operational Guide to the ISO Standards. Netherlands, Springer, 2002.
  • 14. Kurczewski P. and Kłos Z., "Technical Objects Classification for Environmental Analyses", Zagadnienia Eksploat. Masz., vol. 40, 2005, 40, pp. 127–138.
  • 15. Tomporowski A., Flizikowski J., Kruszelnicka W., Piasecka I., Kasner R., Mroziński A. and Kovalyshyn S., "Destructiveness of Profits and Outlays Associated with Operation of Offshore Wind Electric Power Plant. Part 1: Identification of a Model and Its Components.", Pol. Marit. Res., vol.25, 2018, pp.132-139. doi:10.2478/pomr-2018-0064
  • 16. Jolliet O., Margni M., Charles R., Humbert S., Payet J., Rebitzer G. and Rosenbaum R., "IMPACT 2002+: A New Life Cycle Impact Assessment Methodology", Int. J. Life Cycle Assess., vol. 8, 2003, pp. 324-330. https://doi.org/10.1007/BF02978505
  • 17. Blengini G. A., "Life cycle of buildings, demolition and recycling potential: A case study in Turin, Italy", Building and Environment, vol. 44 (2), 2009, pp. 319– 330.
  • 18. Scheuer C., Keoleian G. A., Evaluation of LEED Using Life Cycle Assessment Methods, National Institute Of Standards And Technology (USA), GCR 02-836.
  • 19. Scheuer C., Keoleian G. A. and Reppe P., "Life cycle energy and environmental performance of a new university building: modeling challenges and design implications.", Energy and Buildings, vol. 35, 2003, pp. 1049–1064. https://doi.org/10.1016/S0378-7788(03)00066-5
  • 20. Zhang Z., Wu X., Yang X. and Zhu Y., "BEPAS – a life cycle building environmental performance assessment model", Building and Environment, vol. 41, 2006, pp. 669–675. http://dx.doi.org/10.1016/j.buildenv.2005.02.028
  • 21. Tomporowski D., Kasner R., Franus W. and Doerffer K., "Assessment of Environmental Loads in the Life Cycle of a Retail and Service Building", Energies, vol. 15, 2022, 3144. https://doi.org/10.3390/en15093144
  • 22. Bauer M., Mösle P. and Schwarz M., Green Building. Berlin Heidelberg, Springer Berlin, Heidelberg; 2010.
  • 23. Motoasca E., Agarwal AK. and Breesch H., Energy Sustainability in Built and Urban Environments. Singapore: Springer Singapore, 2019.
  • 24. Plastrik P. and Cleveland J., Life After Carbon. The Next Global Transformation of Cities. Washington, USA: Island Press, 2018.
  • 25. Oladokun MG. and Aigbavboa CO., Simulation-Based Analysis of Energy and Carbon Emissions in the Housing Sector. Cham: Springer International Publishing, 2018.
  • 26. Yang F. and Chen L., High-Rise Urban Form and Microclimate: Climate-Responsive Design for Asian Mega-Cities. Singapore: Springer Singapore, 2020.
  • 27. Mercader-Moyano P., Sustainable Development and Renovation in Architecture, Urbanism and Engineering. Cham: Springer International Publishing, 2017.
  • 28. Drück H., Pillai RG., Tharian MG. and Majeed AZ., "Green Buildings and Sustainable Engineering", in Proceedings of GBSE 2018, Singapore, Springer Singapore, 2019.
  • 29. Recchia L., Boncinelli P., Cini E., Vieri M., Pegna FG. and Sarri D., Multicriteria Analysis and LCA Techniques: With Applications to Agro-Engineering Problems. London-New York, Springer; 2011.
  • 30. Tomporowski A., Piasecka I., Flizikowski J., Kasner R., Kruszelnicka W., Mroziński A., and Bieliński K., "Comparison Analysis of Blade Life Cycles of Land-Based and Offshore Wind Power Plants", Pol. Marit. Res. vo. 25, 2018, pp. 225 - 233. https://doi.org/10.2478/pomr-2018-0046
  • 31. Piasecka I., Bałdowska-Witos P., Piotrowska K. and Tomporowski A., "Eco-Energetical Life Cycle Assessment of Materials and Components of Photovoltaic Power Plant", Energies, vol. 13(6), 2020, 1385. https://doi.org/10.3390/en13061385
  • 32. Littlewood J., Howlett RJ., Capozzoli A. and Jain LC., "Sustainability in Energy and Buildings", in Proceedings of SEB 2019, Singapore, Springer Singapore, 2020.
  • 33. Barrett J., Vallack H., Jones A. and Haq G., "A Material Flow Analysis and Ecological Footprint of York Technical Report", Stockholm Environment Institute, 2002, http://doi.org/10.13140/RG.2.1.3258.6085
  • 34. Husain D. and Prakash R., "Life Cycle Ecological Footprint Assessment of an Academic Building", Journal of The Institution of Engineers (India), vol. 100, 2019, pp. 97–110 http://doi.org/10.1007/s40030-018-0334-3
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-f1128cbb-6c3b-4089-b87c-bc4328c07063
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.