Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
next last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-ef906041-1003-45a2-8e26-f46d59a6fd30

Czasopismo

Pomiary Automatyka Robotyka

Tytuł artykułu

Nieinwazyjny interfejs mózg–komputer do zastosowań technicznych

Autorzy Cegielska, A.  Olszewski, M. 
Treść / Zawartość
Warianty tytułu
EN Noninvasive brain–computer interfaces for technical applications
Języki publikacji PL
Abstrakty
PL Celem opracowania jest zwięzłe opisanie zasad działania interfejsu mózg–komputer i przedstawienie jego możliwych zastosowań technicznych. Jest to współcześnie intensywnie rozwijany system mechatroniczny mierzący aktywność mózgu i generujący na jej podstawie sygnały sterujące dla urządzeń i maszyn. W artykule zawarto podstawowe informacje na temat ludzkiego mózgu, metod pomiaru jego aktywności, przetwarzania i klasyfikacji sygnałów. Przedstawiono różne możliwości realizacji interfejsu i jego zastosowania techniczne.
EN The aim of this paper is to briefly describe principles of brain–computer interface and presentation of its possible technical applications. At this point in time is in mechatronics an intensively developing system, that measures brain activity and on this basis generates control signals for devices or machines. This article contains basic information about the human brain, its activity and measurement methods, processing and classification of signals. Different abilities were presented to the realization of the interface and using it technical.
Słowa kluczowe
PL interfejs mózg-komputer   elektroencefalografia   sterowanie za pomocą ludzkiego mózgu   aktywność mózgu  
EN brain-computer interface   electroencephalography   control by the human brain   brain activity  
Wydawca Przemysłowy Instytut Automatyki i Pomiarów PIAP
Czasopismo Pomiary Automatyka Robotyka
Rocznik 2015
Tom R. 19, nr 3
Strony 5--14
Opis fizyczny Bibliogr. 76 poz., fot., rys., wykr.
Twórcy
autor Cegielska, A.
  • Politechnika Warszawska, Wydział Mechatroniki, Instytut Automatyki i Robotyki, ul. św. Andrzeja Boboli 8, 02-525 Warszawa, a.cegielska@mchtr.pw.edu.pl
autor Olszewski, M.
  • Politechnika Warszawska, Wydział Mechatroniki, Instytut Automatyki i Robotyki, ul. św. Andrzeja Boboli 8, 02-525 Warszawa, m.olszewski@mchtr.pw.edu.pl
Bibliografia
1. Aloise F., Arico P., Schettini F., Salinari S., Mattia D., Cincotti F., Asynchronous gaze-independent event-related potential-based brain-computer interface, “Artificial Intelligence in Medicine”, Vol. 59, No. 2/2013, 61-69, DOI: 10.1016/j.artmed.2013.07.006.
2. Aloise F., Schettini F., Arico P., Salinari S., Babiloni F., Cincotti F., A comparison of classification techniques for a gaze-independent P300-based brain-computer interface, “Journal of Neural Engineering”, 9(4):045012, 2012, DOI: 10.1088/1741-2560/9/4/045012.
3. Amiri S., Rabbi A., Azinfar L., Fazel-Rezai R., A review of P300, SSVEP, and hybrid P300/SSVEP brain-computer interface systems, [w:] Brain-Computer Interface Systems - Recent Progress and Future Prospects, 2013, DOI: 10.5772/56135.
4. Ang KK., Chin Z.Y., Zhang H., Guan C., Filter bank common spatial pattern (fbcsp) in brain-computer interface, Neural Networks, 2008. IJCNN 2008. (IEEE World Congress on Computational Intelligence), 2390-2397, IEEE, 2008, DOI: 10.1109/IJCNN.2008.4634130.
5. Basar E., Basar-Eroglu C., Karakas S., Schürmann M., Are cognitive processes manifested in event-related gamma, alpha, theta and delta oscillations in the EEG? “Neuroscience Letters”, Vol. 259, No. 3/1999, 165-168, DOI: 10.1016/S0304-3940(98)00934-3.
6. Bashashati A., Fatourechi M., Ward R.K., Birch G.E., A survey of signal processing algorithms in brain-computer interfaces based on electrical brain signals, “Journal of Neural engineering”, 4(2):R32, 2007.
7. Bell C.J., Shenoy P., Chalodhorn R., Rao R.P., Control of a humanoid robot by a noninvasive brain-computer interface in humans, “Journal of Neural Engineering”, 5(2):214, 2008.
8. Birbaumer N., Murguialday A.R., Cohen L., Brain--computer interface in paralysis, “Current Opinion in Neurology”, 21(6):634-638, 2008, DOI: 10.1097/WCO.0b013e328315ee2d.
9. Blankertz B., Dornhege G., Krauledat M., Müller K.-R., Curio G., The non-invasive Berlin Brain–Computer Interface: fast acquisition of effective performance in untrained subjects, “Neuroimage”, 37(2):539-550, 2007.
10. Bos D.P.-O., Reuderink B., van de Laar B., Gürkök H., Mühl C., Poel M., Nijholt A., Heylen D., Brain-computer interfacing and games, [in:] Brain-Computer Interfaces, 149-178, 2010, DOI: 10.1007/978-1-84996-272-8_10.
11. Carlson T., Tonin L., Leeb R., Rohm M., Rupp R., Al--Khodairy A., Millán J. d. R., BCI telepresence: A six patient evaluation. Proceedings of TOBI Workshop III: Bringing BCIs to End-Users: Facing the Challenge, EPFL-CONF-174371, 18-19, 2012.
12. Cegielska A., Opracowanie możliwych realizacji interfejsu mózg-komputer, Praca magisterska, Politechnika Warszawska, 2015.
13. Cheeín F.A.A., Carelli R., Celeste W.C., Bastos T.F., Di Sciascio F., Maps managing interface design for a mobile robot navigation governed by a BCI, “Journal of Physics: Conference Series”, Vol. 90, IOP Publishing, 2007, DOI:10.1088/1742-6596/90/1/012088.
14. Chella A., Pagello E., Menegatti E., Sorbello R., Anzalone S.M., Cinquegrani F., Tonin L., Piccione F., Prifitis K., Blanda C. et al., A BCI teleoperated museum robotic guide, “Complex, Intelligent and Software Intensive Systems”, CISIS’09. International Conference, 783-788. IEEE, 2009, DOI: 10.1109/CISIS.2009.154.
15. Cincotti F., Mattia D., Aloise F., Bufalari S., Schalk G., Oriolo G., Cherubini A., Marciani M.G., Babiloni F., Non-invasive brain-computer interface system: towards its application as assistive technology, “Brain Research Bulletin”, 75(6):796-803, 2008, DOI: 10.1016/j.brainresbull.2008.01.007.
16. Daly J.J., Wolpaw J.R., Brain–computer interfaces in neurological rehabilitation, “Lancet Neurology”, 7(11):1032-1043, 2008, DOI: 10.1016/S1474-4422(08)70223-0.
17. Delorme A., Sejnowski T., Makeig S., Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis, “Neuroimage”, 34(4):1443-1449, 2007.
18. Devlaminck D., Wyns B., Boullart L., Santens P., Otte G., Brain-computer interfaces: from theory to practice, European Symposium on Artificial Neural Networks, 2009.
19. Durka P.J., Blinowska K.J., Analysis of EEG transients by means of matching pursuit. Annals of Biomedical Engineering, Vol. 23, 5/1995, 608-611, DOI: 10.1007/BF02584459.
20. Fabiani G.E., McFarland D. J., Wolpaw J.R., Pfurtscheller G., Conversion of EEG activity into cursor movement by a brain-computer interface (BCI). IEEE Transactions on Neural Systems and Rehabilitation Engineering, 12(3):331-338, 2004, DOI: 10.1109/TNSRE.2004.834627.
21. Fatourechi M., Bashashati A., Ward R.K., Birch G.E., EMG and EOG artifacts in brain computer interface systems: A survey, “Clinical Neurophysiology”, Vol. 118, 3/007, 480-494, DOI: 10.1016/j.clinph.2006.10.019.
22. Fonseca C., Cunha J.S., Martins R., Ferreira V., de Sá J.M., Barbosa M., da Silva A.M., A novel dry active electrode for EEG recording. IEEE Trans. Biomed. Engineering, Vol. 54, 1/2007, 162-165, DOI: 10.1109/TBME.2006.884649.
23. Gargiulo G., Calvo R. A., Bifulco P., Cesarelli M., Jin C., Mohamed A., van Schaik A., A new EEG recording system for passive dry electrodes, Clinical Neurophysiology, Vol. 121, 5/2010, 686-693, DOI: 10.1016/j.clinph.2009.12.025.
24. George L., Lécuyer A. et al., An overview of research on ’passive’ brain-computer interfaces for implicit human-computer interaction. International Conference on Applied Bionics and Biomechanics ICABB 2010-Workshop W1’Brain-Computer Interfacing and Virtual Reality’, 2010.
25. Górska T., Majczyński H., Mechanizmy sterowania ruchami dowolnymi. [w:] praca zbiorowa Górska T., Grabowska A., Zagrodzka J. (red.), Mózg a zachowanie, Wydawnictwo Naukowe PWN, 2000.
26. Guger C., Krausz G., Allison B.Z., Edlinger G., Comparison of dry and gel based electrodes for P300 brain-computer interfaces, “Frontiers in Neuroscience”, 6, 2012, DOI: 10.3389/fnins.2012.00060.
27. Gürkök H., Nijholt A., Poel M., Obbink M., Evaluating a multi-player brain-computer interface game: Challenge versus co-experience, Entertainment Computing, Vol. 4, 3/2013, 195-203, DOI: 10.1016/j.entcom.2012.11.001.
28. Handy T. C., Event-related Potentials: A methods handbook. MIT Press, 2005.
29. He B., Modeling and Imaging of Bioelectrical Activity. Springer Verlag, 2004.
30. Hinterberger T., Schmidt S., Neumann N., Mellinger J., Blankertz B., Curio G., Birbaumer N., Brain-computer communication and slow cortical potentials, Biomedical Engineering, IEEE Transactions on, Vol. 51, 6/2004, 1011-1018, DOI: 10.1109/TBME.2004.827067.
31. Hoffmann L., Cicchese J., Berry S., Hippocampal theta-based brain computer interface, “Brain-Computer Interfaces”, Vol. 74, 155-184, Springer Verlag, 2015, DOI: 10.1007/978-3-319-10978-7_6.
32. Hoffmann U., Vesin J.-M., Ebrahimi T., Diserens K., An effcient P300-based brain-computer interface for disabled subjects, “Journal of Neuroscience Methods”, Vol. 167, 1/2008, 115-125, DOI: 10.1016/j.jneumeth.2007.03.005.
33. Huang R.-S., Jung T.-P., Makeig S., Event-related brain dynamics in continuous sustained-attention tasks, [w:] Foundations of Augmented Cognition, 65-74. Springer Verlag, 2007, DOI: 10.1007/978-3-540-73216-7_8.
34. Jonmohamadi Y., Poudel G., Innes C., Jones R., Source-space ICA for EEG source separation, localization, and time-course reconstruction. “NeuroImage”, Vol. 101, 720-737, 2014, DOI: 10.1016/j.neuroimage.2014.07.052.
35. Kaplan A.Y., Fingelkurts A.A., Fingelkurts A.A., Borisov S.V., Darkhovsky B.S., Nonstationary nature of the brain activity as revealed by EEG/MEG: methodological, practical and conceptual challenges, “Signal Processing”, Vol. 85, 11/2005, 2190-2212, DOI: 10.1016/j.sigpro.2005.07.010.
36. Kübler A., Nijboer F., Mellinger J., Vaughan T.M., Pawelzik H., Schalk G., McFarland D.J., Birbaumer N., Wolpaw J.R., Patients with ALS can use sensorimotor rhythms to operate a brain-computer interface, “Neurology”, 64(10):1775-1777, 2005.
37. Kübler A., Mattia D., Rupp R., Tangermann M., Facing the challenge: Bringing brain-computer interfaces to end-users, “Artificial Intelligence in Medicine”, 59:55-60, 2013, DOI: 10.1016/j.artmed.2013.08.002.
38. Lebedev M.A., Nicolelis M.A., Brain–machine interfaces: past, present and future, “Trends in Neurosciences”, Vol. 29, 9/2006, 536-546, DOI: 10.1016/j.tins.2006.07.004.
39. Lee E.C., Woo J.C., Kim J.H., Whang M., Park K.R., A brain-computer interface method combined with eye tracking for 3D interaction, “Journal of Neuroscience Methods”, Vol. 190, 2/2010, 289-298, DOI: 10.1016/j.jneumeth.2010.05.008.
40. Leuthardt E.C., Schalk G., Wolpaw J.R., Ojemann J.G., Moran D.W., A brain-computer interface using electrocorticographic signals in humans, “Journal of Neural Engineering”, 1(2):63-71, 2004.
41. Llera A., van Gerven M.A., Gómez V., Jensen O., Kappen H.J., On the use of interaction error potentials for adaptive brain computer interfaces, “Neural Networks”, Vol. 24, 10/2011, 1120-1127, DOI: 10.1016/j.neunet.2011.05.006.
42. Lotte F., Congedo M., Lécuyer A., Lamarche F., Arnaldi B. et al., A review of classification algorithms for EEG-based brain–computer interfaces, “Journal of Neural Engineering”, Vol. 4, 2/2007, DOI: 10.1088/1741-2560/4/2/R01.
43. Luna P., Controlling machines with just the power of thought, “The Lancet Neurology”, Vol. 10, No. 9/2011, 780-781, DOI: 10.1016/S1474-4422(11)70180-6.
44. Makeig S., Debener S., Onton J., Delorme A., Mining event-related brain dynamics, “Trends in Cognitive Sciences”, 8(5):204-210, 2004.
45. Martinez P., Bakardjian H., Cichocki A., Fully online multicommand brain-computer interface with visual neurofeedback using SSVEP paradigm, “Computational Intelligence and Neuroscience”, 2007:13-13, 2007, DOI: 10.1155/2007/94561.
46. Mason S.G., Birch G.E., A general framework for brain-computer interface design, “Neural Systems and Rehabilitation Engineering”, Vol. 11, 1/2003, 70-85, DOI: 10.1109/TNSRE.2003.810426.
47. McFarland D.J., Sarnacki W.A., Wolpaw J.R., Brain-computer interface (BCI) operation: optimizing information transfer rates, “Biological Psychology”, Vol. 63, 3/2003, 237-251, DOI: 10.1016/S0301-0511(03)00073-5.
48. Müller K.-R., Krauledat M., Dornhege G., Curio G., Blankertz B., Machine learning techniques for brain-computer interfaces, “Biomedical Engineering”, 49(1):11-22, 2004.
49. Müller K.-R., Tangermann M., Dornhege G., Krauledat M., Curio G., Blankertz B., Machine learning for real-time single-trial EEG-analysis: from brain–computer interfacing to mental state monitoring, “Journal of Neuroscience Methods”, 167(1):82-90, 2008.
50. Neuper C., Scherer R., Wriessnegger S., Pfurtscheller G., Motor imagery and action observation: modulation of sensorimotor brain rhythms during mental control of a brain-computer interface, “Clinical Neurophysiology”, Vol. 120, 2/2009, 239-247, DOI: 10.1016/j.clinph.2008.11.015.
51. Nicolelis M.A., Brain-machine interfaces to restore motor function and probe neural circuits, “Nature Reviews Neuroscience”, Vol. 4, 5/2003, 417-422, DOI: 10.1038/nrn1105.
52. Obermaier B., Neuper C., Guger C., Pfurtscheller G., Information transfer rate in a five-classes brain-computer interface, “Neural Systems and Rehabilitation Engineering”, Vol. 9, 3/2001, 283-288, DOI: 10.1109/7333.948456.
53. Olszewski M. i in., Podstawy mechatroniki. REA, Warszawa 2006.
54. Olszewski M. i in., Urządzenia i systemy mechatroniczne. REA, Warszawa 2009.
55. Parra L.C., Spence C.D., Gerson A.D., Sajda P., Recipes for the linear analysis of EEG, “Neuroimage”, 28(2):326-341, 2005.
56. Pereda E., Quiroga R.Q., Bhattacharya J., Nonlinear multivariate analysis of neurophysiological signals, “Progress in Neurobiology”, 77(1):1-37, 2005.
57. Pfurtscheller G., Lopes da Silva F. H., Event-related EEG/MEG synchronization and desynchronization: basic principles, “Clinical Neurophysiology”, 110(11):1842-1857, 1999.
58. Pfurtscheller G., Neuper C., Guger C., Harkam W., Ramoser H., Schlogl A., Obermaier B., Pregenzer M., i in., Current trends in Graz brain-computer interface (BCI) research, “IEEE Transactions on Rehabilitation Engineering”, Vol. 8, 2/2000, 216-219, DOI: 10.1109/86.847821.
59. Ravi K., Palaniappan R., Neural network classification of late gamma band electroencephalogram features, “Soft Computing”, Vol. 10, 2/2006, 163-169, DOI: 10.1007/s00500-004-0439-7.
60. Reyes J.F., Tosunoglu S., An overview of brain-computer interface technology applications in robotics, Florida Conference on Recent Advances in Robotics, 4-5 May 2011.
61. Rohm M., Schneiders M., Müller C., Kreilinger A., Kaiser V., Müller-Putz G.R., Rupp R., Hybrid brain-computer interfaces and hybrid neuroprostheses for restoration of upper limb functions in individuals with high-level spinal cord injury, “Artificial Intelligence in Medicine”, Vol. 59, 2/2013, 133-142, DOI: 10.1016/j.artmed.2013.07.004.
62. Sannelli C., Vidaurre C., Müller K.-R., Blankertz B., CSP patches: an ensemble of optimized spatial filters. An evaluation study, “Journal of Neural Engineering”, 8(2):025012, 2011, DOI: 10.1088/1741-2560/8/2/025012.
63. Schalk G., Brunner P., Gerhardt L.A., Bischof H., Wolpaw J.R., Brain-computer interfaces (BCIs): Detection instead of classification, “Journal of Neuroscience Methods”, Vol. 167, 1/2008, 51-62, DOI: 10.1016/j.jneumeth.2007.08.010.
64. Schalk G., Leuthardt E.C., Brunner P., Ojemann J.G., Gerhardt L.A., Wolpaw J.R., Real-time detection of event-related brain activity, “Neuroimage”, 43(2):245-249, 2008, DOI: 10.1016/j.neuroimage.2008.07.037.
65. Sporns O., Tononi G., Kötter R., The human connectome: a structural description of the human brain, “PloS Computational Biology”, 1(4):e42, 2005, DOI: 10.1371/journal.pcbi.0010042.
66. Stern R.M., Ray W.J., Quigley K.S., Psychophysiological recording, Oxford University Press, 2001.
67. Steward O., Principles of cellular, molecular, and developmental neuroscience, Springer Verlag, 1989.
68. Tan D.S., Nijholt A., Brain-Computer Interfaces Applying our Minds to Human-Computer Interaction, Springer Verlag, Londyn, 2010.
69. Tee K.P., Guan C., Ang K.K., Phua K.S., Wang C., Zhang H., Augmenting cognitive processes in robot-assisted motor rehabilitation, Biomedical Robotics and Biomechatronics, 2nd IEEE RAS & EMBS International Conference, 698-703, IEEE, 2008, DOI: 10.1109/BIOROB.2008.4762894.
70. Traczyk W.Z., Fizjologia człowieka w zarysie. Państwowy Zakład Wydawnictw Lekarskich, 1978.
71. Treder M.S., Blankertz B., (C)overt attention and visual speller design in an ERP-based brain-computer interface, “Behavioral and Brain Functions”, 6/2010, DOI: 10.1186/1744-9081-6-28.
72. Úbeda A., Iánez E., Azorín J.M., Shared control architecture based on RFID to control a robot arm using a spontaneous brain-machine interface, “Robotics and Autonomous Systems”, Vol. 61, 8/2013, 768-774, DOI: 10.1016/j.robot.2013.04.015.
73. van Gerven M., Farquhar J., Schaefer R., Vlek R., Geuze J., Nijholt A., Ramsey N., Haselager P., Vuurpijl L., Gielen S. et al., The brain-computer interface cycle, “Journal of Neural Engineering”, 6(4):041001, 2009, DOI: 10.1088/1741-2560/6/4/041001.
74. Wolpaw J.R., Wolpaw E.W., Brain–computer interfaces: something new under the sun, [in:] Brain-Computer Interfaces: Principles and Practice, Oxford University Press New York, 2012, DOI: 10.1093/acprof:oso/9780195388855.003.0001.
75. Wróbel A., Neuron i sieci neuronowe, [w:] praca zbiorowa Górska T., Grabowska A., Zagrodzka J. (red.), Mózg a zachowanie, Wydawnictwo Naukowe PWN, 2000.
76. Wróbel A., W poszukiwaniu integracyjnych mechanizmów działania mózgu, [w:] praca zbiorowa Górska T., Grabowska A., Zagrodzka J. (red.), Mózg a zachowanie, Wydawnictwo Naukowe PWN, 2000.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-ef906041-1003-45a2-8e26-f46d59a6fd30
Identyfikatory
DOI 10.14313/PAR_217/5