Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-ef7d3d08-1c4d-4015-ae7f-23a59f7a5237

Czasopismo

Polish Journal of Chemical Technology

Tytuł artykułu

Effect of operating parameters on production of bio-oil from fast pyrolysis of maize stalk in bubbling fluidized bed reactor

Autorzy Ali, N.  Saleem, M.  Shahzad, K.  Hussain, S.  Chughtai, A. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
Abstrakty
EN The yield and composition of pyrolysis products depend on the characteristics of feed stock and process operating parameters. Effect of particle size, reaction temperature and carrier gas flow rate on the yield of bio-oil from fast pyrolysis of Pakistani maize stalk was investigated. Pyrolysis experiments were performed at temperature range of 360-540°C, feed particle size of 1-2 mm and carrier gas flow rate of 7.0-13.0 m3/h (0.61.1 m/s superficial velocity). Bio-oil yield increased with the increase of temperature followed by a decreasing trend. The maximum yield of bio-oil obtained was 42 wt% at a temperature of 490°C with the particle size of around 1.0 mm and carrier gas flow rate of 11.0 m3/h (0.9 m/s superficial velocity). High temperatures resulted in the higher ratios of char and non-condensable gas.
Słowa kluczowe
EN fast pyrolysis   bio-oil   temperature   particle size   carrier gas flow rate   maize stalk  
Wydawca West Pomeranian University of Technology. Publishing House
Czasopismo Polish Journal of Chemical Technology
Rocznik 2016
Tom Vol. 18, nr 3
Strony 88--96
Opis fizyczny Bibliogr. 79 poz., rys., tab.
Twórcy
autor Ali, N.
autor Saleem, M.
  • University of the Punjab, Institute of Chemical Engineering & Technology, Pakistan
autor Shahzad, K.
  • University of the Punjab, Centre for Coal Technology, Pakistan
autor Hussain, S.
  • NFC Institute of Engineering & Technology Multan, Pakistan
autor Chughtai, A.
  • University of the Punjab, Institute of Chemical Engineering & Technology, Pakistan
  • National University of Science and Technology Islamabad, School of Chemical and Materials Engineering, Pakistan
Bibliografia
1. Goyal, H.B., Seal, D. & Saxena, R.C. (2008). Bio-fuels from thermochemical conversion of renewable resources: a review. Renew. Sust. Ener. Rev. 12, 504-517. DOI: 10.1016/j. rser.2006.07.014.
2. Raheem, A., Azlina, W.W., Yap, Y.H.T., Danquah, M.K. & Harun, R. (2015). Thermochemical conversion of microalgal biomass for biofuel production. Renew. Sust. Ener. Rev. 49, 990-999. DOI: 10.1016/j.rser.2015.04.186.
3. Bridgwater, A.V. & Peacocke, G.V.C. (2000). Fast pyrolysis processes for biomass. Renew. Sust. Ener. Rev. 4, 1-73. DOI: 10.1016/S1364-0321(99)00007-6.
4. Yaman, S. (2004). Pyrolysis of biomass to produce fuels and chemical feedstocks. Ener. Conv. Manage. 45, 651-671. DOI: 10.1016/S0196-8904(03)00177-8.
5. Goyal HB, S.R. & Seal, D. Communicated to Haworth Press, USA, 2006. (2006). Thermochemical Conversion of Biomass To Liquids and Gas, Monograph. DOI: 10.1016/j. rser.2006.07.014.
6. Bridgwater, A.V. (1999). Principles and practice of biomass fast pyrolysis processes for liquids. J. Anal. Appl. Pyrol. 51, 3-22. DOI: 10.1016/S0165-2370(99)00005-4.
7. Bridgwater, A.V. Review of fast pyrolysis of biomass and product upgrading. Biom. Bioener. 38, 68-94. DOI: 10.1016/j. biombioe.2011.01.048.
8. Mohan, D., Pittman, C.U. & Steele, P.H. (2006). Pyrolysis of wood/biomass for bio-oil: a critical review. Energy & Fuels 20, 848-889. DOI: 10.1021/ef0502397.
9. Babu, B.V. (2008). Biomass pyrolysis: a state of art review. Biof. Bioprod. Bioref. 2, 393-414. DOI: 10.1002/bbb.92.
10. Bridgewater, A.V. (2004). Biomass fast pyrolysis. Ther. Sci. 8, 21-50. DOI: 10.2298/TSC10402021B.
11. Bimbella, F., Abrego, J., Gonzalo, A., Sanchez, J.L. & Arauzo, J. (2014). Biomass pyrolysis liquids. Fundamentals, technologies and new strategies. Bol. Grup. Esp. Carb. DOI: 10261/108782.
12. Jahirul, M.I., Rasul, M.G., Chowdhury, A.A. & Ashwath, N. (2012). Biofuels production through biomass pyrolysis, a technological review. Energies 5, 4952-5001. DOI: 3390/ en5124952.
13. Demirbas, A. & Arin, G.N. (2002). An overview of biomass pyrolysis. Ener. Sour. 24, 471-482. DOI: 10.1080/00908310252889979.
14. Akhtar, J. & Amin, N.A.S. (2011). A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass. Renew. Sust. Ener. Reviews. 15, 1615-1624. http://dx.doi.org/10.1016/j.rser.2010.11.054
15. Balat, M., Balat, M., Kirtay, E. & Balat, H. (2009). Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 1: Pyrolysis systems. Ener. Con. Managem. 50, 3147-3157. DOI: 10.1016/j.enconman.2009.08.014.
16. Zabaniotou, A.A., Roussos, A.I. & Koroneos, C.J. (2000). A laboratory study of cotton gin waste pyrolysis. J. Anal. Appl. Pyrol. 56, 47-59.
17. Abdullah, N. & Bridgwater, A.V. (2006). Pyrolysis liquid derived from oil palm empty fruit bunches. J. Phys. Sci. 17, 117-129. DOI: 10.1016/S0165-2370(00)00088-7.
18. Putun, A.E., Uzbay, N., Apaydin Varol, E., Uzun, B. B. & Ates, F. (2007). Rapid and slow pyrolysis of pistachio shell: effect of pyrolysis conditions on the product yields and characterization of the liquid product. Inter. J. Ener. Res. 31, 506-514. DOI: 10.1002/er.1263.
19. Akhtar, J. & Saidina Amin, N. A review on operating parameters for optimum liquid oil yield in biomass pyrolysis. Renew. Sustain. Ener. Rev. 16, 5101-5109. DOI: 10.1016/j.rser.2012.05.033.
20. Shafizadeh, F. (1982). Introduction to pyrolysis of biomass. J. Anal. Appl. Pyrol. 3, 283-305. DOI: 10.1016/0165-2370(82)80017-X.
21. Scott, D.S., Piskorz, J., Bergougnou, M.A., Graham, R. & Overend, R.P. (1988). The role of temperature in the fast pyrolysis of cellulose and wood. Indust. & Engine. Chem. Res. 27, 8-15. DOI: 10.1021/ie00073a003.
22. Bridgwater, A.V. (2003). Renewable fuels and chemicals by thermal processing of biomass. Chem. Engine. J. 91, 87-102. DOI: 10.1016/S1385-8947(02)00142-0.
23. Bridgwater, A.V., Meier, D. & Radlein, D. (1999). An overview of fast pyrolysis of biomass. Org. Geochem. 30, 1479-1493. DOI: 10.1016/S0146-6380(99)00120-59.
24. Piskorz, J., Majerski, P., Radlein, D., Scott, D.S. & Bridgwater, A.V. (1998). Fast pyrolysis of sweet sorghum and sweet sorghum bagasse. J. Anal. Appl. Pyrol. 46, 15-29. DOI: 10.1016/S0165-2370(98)00067-9.
25. Horne, P.A. & Williams, P.T. (1996). Influence of temperature on the products from the flash pyrolysis of biomass. Fuel. 75, 1051-1059. DOI: 10.1016/0016-2361(96)00081-6.
26. Demirbas, A. (2007). The influence of temperature on the yields of compounds existing in bio-oils obtained from biomass samples via pyrolysis. Fuel Proces. Technol. 88, 591-597. DOI: 10.1016/j.fuproc.2007.01.010.
27. Toft, A.J. (1996). A comparison of integrated biomass to electricity systems, Aston University.
28. Antal, M.J. & Gronali, M. (2003). The art, science, and technology of charcoal production. Indust. & Engine. Chem. Res. 42, 1619-1640. DOI: 10.1021/ie0207919.
29. Onay, O. (2007). Influence of pyrolysis temperature and heating rate on the production of bio-oil and char from safflower seed by pyrolysis, using a well-swept fixed-bed reactor. Fuel Proces. Technol. 88, 523-531. DOI: 10.1016/j.fuproc.2007.01.001.
30. Bridgwater, A.V. (1999). Principles and practice of biomass fast pyrolysis processes for liquids. J. Anal. Appl. Pyrol. 51, 3-22. DOI: 10.1016/S0165-2370(99)00005-4.
31. Westerhof, R.J.M., Brilman, D.W.F., van Swaaij, W.P.M. & Kersten, S.R.A. (2009). Effect of temperature in fluidized bed fast pyrolysis of biomass: oil quality assessment in test units. Indus. & Engine. Chem. Res. 49, 1160-1168. DOI: 10.1021/ie900885c.
32. Heo, H.S., Park, H.J., Yim, J.H., Sohn, J.M., Park, J., Kim, S.S., Ryu, C., Jeon, J.K. & Park, Y.K. (2010). Influence of operation variables on fast pyrolysis of Miscanthus sinensis var. purpurascens. Biores. Technol. 101, 3672-3677. DOI: 10.1016/j.biortech.2009.12.078.
33. Pattiya, A. & Suttibak, S. (2012). Production of bio-oil via fast pyrolysis of agricultural residues from cassava plantations in a fluidised-bed reactor with a hot vapour filtration unit. J. Anal. Appl. Pyrol. 95, 227-235. DOI: 10.1016/j.jaap.2012.02.010.
34. Mourant, D., Lievens, C., Gunawan, R., Wang, Y., Hu, X., Wu, L., Syed-Hassan, S.S.A. & Li, C.Z. (2013). Effects of temperature on the yields and properties of bio-oil from the fast pyrolysis of mallee bark. Fuel. 108, 400-408. DOI: 10.1016/j.fuel.2012.12.018.
35. Antal, M.J. & Gronli, M. (2003). The art, science, and technology of charcoal production. Indust. & Engine. Chem. Res. 42, 1619-1640. DOI: 10.1021/ie0207919.
36. Park, H.J., Park, Y.K., Dong, J.I., Kim, J.S., Jeon, J.K., Kim, S.S., Kim, J., Song, B., Park, J. & Lee, K.J. (2009). Pyrolysis characteristics of Oriental white oak: kinetic study and fast pyrolysis in a fluidized bed with an improved reaction system. Fuel Proces. Technol. 90, 186-195. DOI: 10.1016/j. fuproc.2008.08.017.
37. Nurul Islam, M., Zailani, R. & Nasir Ani, F. (1999). Pyrolytic oil from fluidised bed pyrolysis of oil palm shell and itscharacterisation. Renew. Ener. 17, 73-84. DOI: 10.1016/ S0960-1481(98)00112-8.
38. Bridgwater, A.V. (2007). The production of biofuels and renewable chemicals by fast pyrolysis of biomass. Inter. J. Glob. Ener. Iss. 27, 160-203. DOI: 10.1504/IJGEI.2007.013654.
39. Huber, G.W., Iborra, S. & Corma, A. (2006). Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem. Rev. 106, 4044-4098. DOI: 10.1021/ cr068360d.
40. Shen, J., Wang, X.S., Garcia-Perez, M., Mourant, D., Rhodes, M.J. & Li, C.Z. (2009). Effects of particle size on the fast pyrolysis of oil mallee woody biomass. Fuel 88, 1810-1817. DOI: 10.1016/j.fuel.2009.05.001.
41. Scott, D.S. & Piskorz, J. (1982). The fl ash pyrolysis of aspen poplar wood. Can. J. Chem. Engine. 60, 666-674. DOI: 10.1002/cjce.5450600514.
42. Raja, S.A., Kennedy, Z.R., Pillai, B.C. & Lee, C.L.R. (2010). Flash pyrolysis of jatropha oil cake in electrically heated fluidized bed reactor. Energy 35, 2819-2823. DOI: 10.1016/j. energy.2010.03.011.
43. Heidari, A., Stahl, R., Younesi, H., Rashidi, A., Troeger, N. & Ghoreyshi, A.A. (2014). Effect of process conditions on product yield and composition of fast pyrolysis of Eucalyptus grandis in fluidized bed reactor. J. Ind. Engine. Chem. 20, 2594-2602. DOI: 10.1016/j.jiec.2013.10.046.
44. Park, H.J., Dong, J.I., Jeon, J.K., Park, Y.K., Yoo, K.S., Kim, S.S., Kim, J. & Kim, S. (2008). Effects of the operating parameters on the production of bio-oil in the fast pyrolysis of Japanese larch. Chem. Engine. J. 143, 124-132. DOI: 10.1016/j. cej.2007.12.031.
45. Choi, H.S., Choi, Y.S. & Park, H.C. (2012). Fast pyrolysis characteristics of lignocellulosic biomass with varying reaction conditions. Renew. Ener. 42, 131-135. DOI: 10.1016/j. renene.2011.08.049.
46. Garcia-Perez, M., Wang, X.S., Shen, J., Rhodes, M.J., Tian, F., Lee, W.J., Wu, H. & Li, C.Z. (2008). Fast pyrolysis of oil mallee woody biomass: effect of temperature on the yield and quality of pyrolysis products. Ind. & Engine. Chem. Res. 47, 1846-1854. DOI: 10.1021/ie071497p.
47. Putun, E., Uzun, B.B. & Putun, A.E. (2006). Fixed-bed catalytic pyrolysis of cotton-seed cake: effects of pyrolysis temperature, natural zeolite content and sweeping gas flow rate. Biores. Technol. 97, 701-710. DOI:10.1016/j.biortech.2005.04.005.
48. Bridgwater, A.V. (2012). Review of fast pyrolysis of biomass and product upgrading. Biom. Bioener. 38, 68-94. DOI: 10.1016/j.biombioe.2011.01.048
49. Bridgwater, T. (2006). Biomass for energy. J. Sci. Food Agric. 86, 1755-1768. DOI: 10.1002/jsfa.2605.
50. Hoekstra, E., Hogendoorn, K.J.A., Wang, X., Westerhof, R.J.M., Kersten, S.R.A., van Swaaij, W.P.M. & Groeneveld, M.J. (2009). Fast pyrolysis of biomass in a fluidized bed reactor: in situ filtering of the vapors. Ind. & Engine. Chem. Res. 48, 4744-4756. DOI: 10.1021/ie8017274.
51. Uzun, B.B., Putun, A.A. & Putun, E. (2006). Fast pyrolysis of soybean cake: product yields and compositions. Biores. Technol. 97, 569-576. DOI: 10.1016/j.biortech.2005.03.026.
52. Bridgwater, A.V. (1997) Biomass fast pyrolysis and applications in Europe. In Making a Business from Biomass in Energy, Environment, Chemicals, Fibers, and Materials. Proc. Third Biomass Conf. of the Americas, Vols, pp. 797-809.
53. Park, H.J., Park, Y.K. & Kim, J.S. (2008). Influence of reaction conditions and the char separation system on the production of bio-oil from radiata pine sawdust by fast pyrolysis. Fuel Proces. Technol. 89, 797-802. DOI: 10.1016/j. fuproc.2008.01.003.
54. Scott, D.S., Majerski, P., Piskorz, J. & Radlein, D. (1999). A second look at fast pyrolysis of biomass-the RTI process. J. Anal. Appl. Pyrol. 51, 23-37. DOI: 10.1016/S0165-2370(99)00006-6.
55. Heo, H.S., Park, H.J., Park, Y.K., Ryu, C., Suh, D.J., Suh, Y.W., Yim, J.H. & Kim, S.S. (2010). Bio-oil production from fast pyrolysis of waste furniture sawdust in a fluidized bed. Biores. Technol. 101, S91-S96. DOI: 10.1016/j.biortech.2009.06.003.
56. Raja, S., Smart, A., Robinson, D.S., Pillai, B.C., Robert, L. & Lindon, C. (2011). Parametric studies on Pyrolysis of pungam oil cake in electrically heated fluidized bed research reactor. Res. J. Chem. Sci. 1, 70-80.
57. Sulaiman, F. & Abdullah, N. (2011). Optimum conditions for maximising pyrolysis liquids of oil palm empty fruit bunches. Energy 36, 2352-2359. DOI: 10.1016/j.energy.2010.12.067.
58. Mante, O.D. & Agblevor, F.A. (2011). Parametric study on the pyrolysis of manure and wood shavings. Biom. Bioener. 35, 4417-4425. DOI: 10.1016/j.biombioe.2011.08.017.
59. Tsai, W.T., Lee, M.K. & Chang, Y.M. (2007). Fast pyrolysis of rice husk: product yields and compositions. Biores.Technol. 98, 22-28. DOI: 10.1016/j.biortech.2005.12.005.
60. Ali, N., Saleem, M., Shahzad, K. & Chughtai, A. (2015). Bio-Oil Production from Fast Pyrolysis of Cotton Stalk in Fluidized Bed Reactor. Ara. J. Sci. Engine. 40, 3019-3027. DOI: 10.1007/s13369-015-1801-z.
61. Zheng, J.L. (2008). Pyrolysis oil from fast pyrolysis of maize stalk. J. Anal. Appl. Pyrol. 83, 205-212. DOI: 10.1016/j. jaap.2008.08.005.
62. Xueyuan, B., Weiming, Y., Lihong, W., Yongjun, L. & Hongzhen, C. (2005). Fast pyrolysis of corn stalk for bio-oil in a plasma heated fluidized bed. Trans. Chin. Soc. Agric. Engine. 21, 127-130.
63. Park, H.J., Park, Y.K. & Kim, J.S. (2008). Influence of reaction conditions and the char separation system on the production of bio-oil from radiata pine sawdust by fast pyrolysis. Fuel Proces. Technol. 89, 797-802. DOI: 10.1016/j. fuproc.2008.01.003.
64. Wang, X., Kersten, S.R.A., Prins, W. & van Swaaij, W.P.M. (2005). Biomass pyrolysis in a fluidized bed reactor. Part 2: Experimental validation of model results. Ind. & Engine. Chem. Res. 44, 8786-8795. DOI: 10.1021/ie050486y.
65. Garcia-Perez, M., Chaala, A., Pakdel, H., Kretschmer, D. & Roy, C. (2007). Characterization of bio-oils in chemical families. Biom. Bioener. 31, 222-242. DOI: 10.1016/j.biombioe. 2006.02.006.
66. Asadullah, M., Rahman, M.A., Ali, M.M., Motin, M.A., Sultan, M.B., Alam, M.R. & Rahman, M.S. (2008). Jute stick pyrolysis for bio-oil production in fluidized bed reactor. Biores. Technol. 99, 44-50.
67. Kim, S.J., Jung, S.H. & Kim, J.S. Fast pyrolysis of palm kernel shells: influence of operation parameters on the bio-oil yield and the yield of phenol and phenolic compounds. Biores. Technol. 101, 9294-9300. DOI: 10.1016/j.biortech.2010.06.110.
68. Islam, M.N., Zailani, R. & Ani, F.N. (1999). Pyrolytic oil from fluidised bed pyrolysis of oil palm shell and itscharacterisation. Ren. Ener. 17, 73-84. DOI: 10.1016/S0960-1481(98)00112-8.
69. Encinar, J.M., Gonzalez, J.F. & Gonzalez, J. (2000). Fixed- bed pyrolysis of Cynara cardunculus L. Product yields and compositions. Fuel Proc. Technol. 68, 209-222. DOI: 10.1016/ S0378-3820(00)00125-9.
70. Putun, A.E., Ozbay, N., Apaydin Varol, E., Uzun, B. B. & Ates, F. (2007). Rapid and slow pyrolysis of pistachio shell: effect of pyrolysis conditions on the product yields and characterization of the liquid product. Inter. J. Ener. Res. 31, 506-514. DOI: 10.1002/er.1263.
71. Ji-Lu, Z. (2007). Bio-oil from fast pyrolysis of rice husk: Yields and related properties and improvement of the pyrolysis system. J. Anal. Appl. Pyrol. 80, 30-35. DOI: 10.1016/j. jaap.2006.12.030.
72. Lv, G.J., Wu, S.B. & Lou, R. (2010). Characteristics of corn stalk hemicellulose pyrolysis in a tubular reactor. BioRes. 5, 2051-2062.
73. Wang, S., Guo, X., Wang, K. & Luo, Z. (2011). Influence of the interaction of components on the pyrolysis behavior of biomass. J. Anal. Appl. Pyrol. 91, 183-189. DOI: 10.1016/j. jaap.2011.02.006.
74. Lv, G., Wu, S., Yang, G., Chen, J., Liu, Y. & Kong, F. (2013). Comparative study of pyrolysis behaviors of corn stalk and its three components. J. Anal. Appl. Pyrol. 104, 185-193. DOI: 10.1016/j.jaap.2013.08.005.
75. Zhou, J., Oehr, K., Simons, G. & Barrass, G. (1997). Simultaneous NOx and SOx control using BioLime. Biomass Gasification and Pyrolysis, State of the Art and Future Prospects. CPL-Press. Newbury. S, 490-494.
76. Bridgwater, A.V. (2000). Slow release fertilizers by pyrolytic recycling of agricultural wastes. PyNe Newsletter. 10.
77. Chum, H.L. & Black, S.K. (1990) Process for fractionating fast-pyrolysis oils, and products derived therefrom, Google Patents.
78. Chum, H.L. & Kreibich, R.E. (1992) Process for preparing phenolic formaldehyde resole resin products derived from fractionated fast-pyrolysis oils, Google Patents.
79. Himmelblau, A. (1991) Method and apparatus for producing water-soluble resin and resin product made by that method, Google Patents.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-ef7d3d08-1c4d-4015-ae7f-23a59f7a5237
Identyfikatory
DOI 10.1515/pjct-2016-0053