Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-ef52133f-1467-4655-8f5c-07a734c29834

Czasopismo

Acta of Bioengineering and Biomechanics

Tytuł artykułu

Relationship between the mineral content of human trabecular bone and selected parameters determined from fatigue test at stepwise-increasing amplitude

Autorzy Mazurkiewicz, A. J.  Topoliński, T. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
Abstrakty
EN Purpose: The study aimed to investigate a relationship between the mineral content of the human trabecular bone and parameters determined from compression fatigue tests at stepwiseincreasing amplitude. Methods: Mineral content of the trabecular bone was estimated as ash density and bone mineral density values. The relationship between the ash density, bone mineral density and factors obtained from fatigue test: fatigue life, cumulative elastic energy and cumulative energy of dissipation was determined. Results: The results from the measurements of ash density and bone mineral density show good correlation with the fatigue test results. The relationship was estimated based on the correlation coefficient R within 0.74-0.79 for the particular pairs of factors. Conclusions: The study shows that the ash density and the bone mineral density are good predictors to estimate the fatigue life of trabecular bone. The study also validates the applicability of the tests at stepwise-increasing amplitude in determining the mechanical properties of trabecular bone.
Słowa kluczowe
PL gęstość mineralna kości   kość beleczkowa   test wytrzymałości  
EN bone mineral density   trabecular bone   fatigue test   stepwise load   ash density  
Wydawca Oficyna Wydawnicza Politechniki Wrocławskiej
Czasopismo Acta of Bioengineering and Biomechanics
Rocznik 2017
Tom Vol. 19, nr 3
Strony 19--26
Opis fizyczny Bibliogr. 24 poz., rys., tab., wykr.
Twórcy
autor Mazurkiewicz, A. J.
  • University of Science and Technology in Bydgoszcz, Poland
autor Topoliński, T.
  • University of Science and Technology in Bydgoszcz, Poland
Bibliografia
1. Lee N., Kim J., A review of the effect of swim training and nutrition on bone mineral density in female athletes, J Exerc Nutrition Biochem, 2015, Dec 31, 19(4), pp. 273-279.
2. Boshnjaku A., Dimauro I., Krasniqi E., Grazioli E., Tschan H., Migliaccio S., Di Luigi L., Caporossi D., Effect of sport training on forearm bone sites in handball and soccer female players, J Sports Med Phys Fitness, 2015, Nov 26.
3. Duckham R. L., Brooke-Wavell K., Summers G. D., Cameron N., Peirce N., Stress fracture injury in female endurance athletes in the United Kingdom: A 12-month prospective study, Scand J Med Sci Sports, 2015, 25(6), DOI: 10.1111/sms.12453.
4. Kruusamäe H., Maasalu K., Jürimäe J., Bone Mineral Density in Elite Dance Sport Athletes, Med Probl Perform Art, 2016, 31(1), DOI: 10.21091/mppa.2016.1005.
5. Śliwicka E., Nowak A., Zep W., Leszczyński P., Pilaczyńska-Szcześniak Ł., Bone mass and bone metabolic indices in male master rowers, J Bone Miner Metab, 2015, 33(5), DOI: 10.1007/s00774-014-0619-1.
6. Martig S., Lee P. V., Anderson G. A., Whitton R. C., Compressive fatigue life of subchondral bone of the metacarpal condyle in thoroughbred racehorses, Bone, 2013, 57(2), DOI: 10.1016/j.bone.2013.09.006.
7. Kristoffersen M., Hetzel U., Parkin T. D., Singer E. R., Are bi-axial proximal sesamoid bone fractures in the British Thoroughbred racehorse a bone fatiguerelated fracture? A histological study, Vet Comp Orthop Traumatol, 2010, 23(5), DOI: 10.3415/VCOT- 09-11-0119.
8. Martin R. B., Stover S. M., Gibson V. A., Gibeling J. C., Griffin L. V., In vitro fatigue behavior of the equine third metacarpus: remodeling and microcrack damage analysis, J Orthop Res, 1996, 14(5).
9. Gibson V. A., Stover S. M., Gibeling J.C., Hazelwood S. J., Martin R. B., Osteonal effects on elastic modulus and fatigue life in equine bone, J Biomech, 2006, 39(2).
10. Mosekilde L., Danielsen C.C., Biomechanical competence of vertebral trabecular bone in relation to ash density and age in normal individuals, Bone, 1987, 8(2), 79-85.
11. Keyak J. H., Lee I. Y., Nath D. S., Skinner H. B ., Postfailure compressive behavior of tibial trabecular bone in three anatomic directions, J Biomed Mater Res, 1996, 31(3), 373-8.
12. Kang Q., An Y. H., Friedman R. F., Mechanical properties and bone densities of canine trabecular bone, J Mater Sci Mater Med., 1998, 9(5), 263-7.
13. Edmondston S. J., Singer K. P., Day R. E., Breidahl P. D., Price R. I., Formalin fixation effects on vertebral bone density and failure mechanics: an in–vitro study of human and sheep vertebrae, Clinical Biomechanics, 1994, 9(3).
14. Pöpperl G., Lochmüller E. M., Becker H.J., Mall G., Steinlechner M., Eckstein F., Determination of calcaneal ultrasound properties ex situ: reproducibility, effects of storage, formalin fixation, maceration, and changes in anatomic measurement site, Calcified Tissue International, 1999, Vol. 65.
15. Mazurkiewicz A., Topoliński T., Relations among strength and structure osteoporotic and coxarthrotic trabecular bone, Technical Sciences, 2007, Vol. 10, 87-94.
16. Bowman S. M., Guo X. E., Cheng D. W., Keaveny T. M., Gibson L. J., Hayes W. C., McMahon T.A., Creep contributes to the fatigue behavior of bovine trabecular bone, Journal of Biomechanical Engineering, 1998, 120(5), 647-654.
17. Topolinski T., Cichański A., Mazurkiewicz A., Nowicki K., Study of the behavior of trabecular bone under cyclic compression with stepwise increasing amplitude, J Mech Behav Biomed Mater, 2012, 4, 1755-1763.
18. Yuehuei H., Draughn R., Mechanical testing of bone and the bone-implant interface, CRC Press New York, 1999.
19. Nikodem A., Correlations between structural and mechanical properties of human trabecular femur bone, Acta of Bioengineering and Biomechanics, 2012, Vol. 14, No. 2, 37-46.
20. Baum T., Grande Garcia E., Burgkart R., Gordijenko O., Liebl H., Jungmann P. M., Gruber M., Zahel T., Rummeny E. J., Waldt S., Bauer J. S., Osteoporosis imaging: effects of bone preservation on MDCT-based trabecular bone microstructure parameters and finite element models, BMC Med Imaging, 2015, Jun 26,15-22.
21. Carter D. R., Hayes W. C., Schurman D. J., Fatigue life of compact bone. Effects of microstructure and density, J Biomech, 1976, 9(4), 211-218.
22. Locati L., Fatigue tests as design and production aids, Metallurgia Italiana 9, 1955, 301-308.
23. Landgraf R. W., Morrow J., Endo T., Determination of the cyclic stress-strain curve, Journal of Materials, 1969, No. 4, 176-188.
24. Covin S., Bone mechanics handbook, -second edition, CRC Press New York, 1999.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-ef52133f-1467-4655-8f5c-07a734c29834
Identyfikatory
DOI 10.5277/ABB-00722-2016-02