Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-ec9bdd21-e6b9-4024-8990-1d1e6d242196

Czasopismo

Journal of Power of Technologies

Tytuł artykułu

Analysis of cooling of the exhaust system in a small airplane by applying the ejector effect

Autorzy Złoty, Ł.  Łapka, P.  Furmański, P. 
Treść / Zawartość http://www.papers.itc.pw.edu.pl
Warianty tytułu
Języki publikacji EN
Abstrakty
EN This paper presents a thermal analysis of elements of the exhaust system of the redesigned airplane I-23. In order to improve the thermal performance of the exhaust system and decrease thermal loads inside the engine bay, modifications of the initial geometry of the cover pipe were proposed. This pipe shields the nacelle interior from thermal interaction and direct contact with the hot exhaust pipe. Several openings were created in its wall to increase the mass flow rate of the cold air sucked in from the nacelle interior to the gap between the exhaust pipe and its cover due to the ejector effect. Then numerical models were developed and simulations for flight conditions were carried out for the original and modified exhaust systems. The results obtained for both geometries were compared, showing that openings in the cover duct resulted in a high mass flow rate flowing through the gap between exhaust pipe and its cover and a lower exhaust pipe temperature. Even though the number, locations and cross-section area of the openings were selected arbitrarily, better thermal performance was obtained for the modified exhaust system.
Słowa kluczowe
PL układ wydechowy   wymiana ciepła   symulacja numeryczna   model cieplny  
EN exhaust system   heat transfer   numerical simulation   thermal model  
Wydawca Institute of Heat Engineering, Warsaw University of Technology
Czasopismo Journal of Power of Technologies
Rocznik 2018
Tom Vol. 98, nr 1
Strony 121--126
Opis fizyczny Bibliogr. 14 poz., rys.
Twórcy
autor Złoty, Ł.
autor Łapka, P.
autor Furmański, P.
Bibliografia
[1] P. Łapka, M. Seredyński, P. Furmański, A. Dziubiński, J. Banaszek, Simplified thermo-fluid model of an engine cowling in a small airplane, Aircraft Engineering and Aerospace Technology: An International Journal 86 (3) (2014) 242–249.
[2] W. Stalewski, J., Zółtak, The preliminary design of the air-intake system and the nacelle in the small aircraft-engine integration process, Aircraft Engineering and Aerospace Technology: An International Journal 86 (3) (2014) 250–258.
[3] T. Goetzendorf-Grabowski, Formulation of the optimization problem for engine mount design–tractor propeller case, Aircraft Engineering and Aerospace Technology: An International Journal 86 (3) (2014) 228–233.
[4] P. Łapka, M. Bakker, P. Furmański, H. van Tongeren, Comparison of 1d and 3d thermal models of the nacelle ventilation system in a small airplane, Aircraft Engineering and Aerospace Technology 90 (1) (2018) 114–125.
[5] P. Łapka, M. Seredynski, P. Furmanski, Investigation of thermal interactions between the exhaust jet and airplane skin in small aircrafts, Progress in Computational Fluid Dynamics 2017, in print. 90 (1) (2017) 114–125.
[6] A. Iwaniuk, W. Wiśniowski, J., Zółtak, Multi-disciplinary optimisation approach for a light turboprop aircraft-engine integration and improvement, Aircraft Engineering and Aerospace Technology: An International Journal 88 (2) (2016) 348–355.
[7] J. Polewka, P. Krawczyk, P. Prusiński, Cfd modelling of low-emission pulverized coal swirl burner, Journal of Power Technologies 96.
[8] W. Smuga, L. J. Kapusta, A. Teodorczyk, Numerical simulations of nheptane spray in high pressure and temperature environments, Journal of Power Technologies 97 (1) (2017) 1.
[9] M. Chmielewski, M. Gieras, Planck mean absorption coecients of h2o, co2, co and no for radiation numerical modeling in combusting flows, Journal of Power Technologies 95 (2) (2015) 97.
[10] H. K. Versteeg, W. Malalasekera, An introduction to computational fluid dynamics: the finite volume method, Pearson Education, 2007.
[11] J. R. Howell, R. Siegel, M. Menguc, Thermal radiation heat transfer, CRC press, 1992.
[12] P. Łapka, P. Furma´ nski, Fixed grid simulation of radiation-conduction dominated solidification process, Journal of Heat Transfer 132 (2) (2010) 023504.
[13] P. Łapka, P. Furma´ nski, Fixed cartesian grid based numerical model for solidification process of semi-transparent materials i: modelling and verification, International Journal of Heat and Mass Transfer 55 (19-20) (2012) 4941–4952.
[14] International Standard Atmosphere Model http://www.aerospaceweb.org/design/scripts/atmosphere/, 2017.
Uwagi
PL Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-ec9bdd21-e6b9-4024-8990-1d1e6d242196
Identyfikatory