
http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-eb5cf7df-f910-40e6-9ae6-1b03f079e830

Czasopismo |
Combustion Engines |
|||||||||||||
Tytuł artykułu |
Modelling of transcritical and supercritical nitrogen jets |
|||||||||||||
Autorzy | Antunes, E. Silva, A. Barata, J. | |||||||||||||
Treść / Zawartość | ||||||||||||||
Warianty tytułu |
|
|||||||||||||
Języki publikacji | EN | |||||||||||||
Abstrakty |
|
|||||||||||||
Słowa kluczowe |
|
|||||||||||||
Wydawca |
Polskie Towarzystwo Naukowe Silników Spalinowych |
|||||||||||||
Czasopismo | Combustion Engines | |||||||||||||
Rocznik | 2017 | |||||||||||||
Tom | R. 56, nr 2 | |||||||||||||
Strony | 125--132 | |||||||||||||
Opis fizyczny | Bibliogr. 36 poz., wykr. | |||||||||||||
Twórcy |
|
|||||||||||||
Bibliografia |
[1] BELLAN, J. Supercritical (and subcritical) fluid behavior and modeling: drops, streams, shear and mixing layers, jets and sprays. Prog. Energy Combust. Sci. 2000, 26, 329-366.
[2] LACAZE, G., OEFELEIN, J.C. A non-premixed combustion model based on flame structure analysis at supercritical pressures. Combust. Flame. 2012, 159, 2087-2103. [3] NEWMAN, J.A., BRZUSTOWSKI T.A. Behavior of a liquid jet near the thermodynamic critical region. AIAA J. 1971, 9, 1595-1602. [4] MAYER, W.O.H. et al. Atomization and breakup of cryogenic propellants under high-pressure subcritical and supercritical conditions. J. Propuls. Power. 1998, 14(5), 835-842. [5] OSCHWALD, M., SCHIK, A. Supercritical nitrogen free jet investigated by spontaneous Raman scattering. Exp. Fluids. 1999, 27, 497-506. [6] CHEHROUDI, B., COHN, R., TALLEY, D. Gas behavior of cryogenic fluids under sub- and supercritical conditions. Eighth International Conference on Liquid Atomization & Sprays Systems. ICLASS-2000, 2000. [7] CHEHROUDI, B., COHN, R., TALLEY, D. Spray/gas behaviour of cryogenic fluids under sub- and supercritical conditions. Eighth International Conference on Liquid Atomization & Sprays Systems. ICLASS-2000, 2000. [8] OSCHWALD, M., MICCI, M.M. Spreading angle and centerline variation of density of supercritical nitrogen jets. Sprays. 2002, 12(1-3), 91-106. [9] MAYER, W., TELAAR, J., BRANAM, R. et al. Raman measurements of cryogenic injection at supercritical pressure. Heat Mass Transf. 2003, 39, 709-719. [10] OSCHWALD, M. et al. Injection of fluids into supercritical environments. Combust. Sci. Technol. 2006, 178, 908038079, 49-100. [11] STAR A.M., EDWARDS J.R., LIN K.-C. et al. Numerical simulation of injection of supercritical ethylene into nitrogen. J. Propuls. Power. 2006, 22(4), 809-819. [12] MARTÍNEZ-MARTÍNEZ, S., SÁNCHEZ-CRUZ, F.A., RIESCO-ÁVILA, J.M. et al. Liquid penetration length in direct diesel fuel injection. Appl. Therm. Eng. 2008, 28, 1756-1762. [13] SEGAL, C., POLIKHOV, S.A. Subcritical to supercritical mixing. Phys. Fluids. 2008, 20, 1-7. [14] SCHMITT, T., RODRIGUEZ, J., LEYVA, I.A., CANDEL, S. Experiments and numerical simulation of mixing under supercritical conditions. Phys. Fluids. 2012, 24. [15] BARATA, J.M.M., SILVA, A.R.R., GOKALP, I. Numerical study of cryogenic jets under supercritical conditions. Journal of Propulsion and Power. 2003, 19, 142-147. [16] ZONG, N., MENG, H., HSIEH, S.Y., YANG, V. A numerical study of cryogenic fluid injection and mixing under supercritical conditions. Phys. Fluids. 2004, 16, 4248-4261. [17] ZONG, N., YANG, V. Cryogenic fluid jets and mixing layers in transcritical and supercritical environments. Combust. Sci. Technol. 2006, 178, 908038079, 193-227. [18] AOUISSI, M., BOUNIF, A., BENSAYAH, K. Scalar turbulence model investigation with variable turbulent Prandtl number in heated jets and diffusion flames. Heat Mass Transf. und Stoffuebertragung. 2008, 44, 9, 1065–1077. [19] SCHMITT, T., SELLE, L., CUENOT, B., POINSOT, T. Large-eddy simulation of transcritical flows. Comptes Rendus - Mec. 2009, 337(6-7), 528-538. [20] KIM, T., KIM, Y., KIM, S.K. Numerical study of cryogenic liquid nitrogen jets at supercritical pressures. J. Supercrit. Fluids. 2011, 56(2), 152-163. [21] ZHOU, L., XIE, M.-Z., JIA, M., SHI, J.-R. Large eddy simulation of fuel injection and mixing process in a diesel engine. Acta Mech. Sin. 2011, 27, 519-530. [22] NEGRO, S., BIANCHI, G.M. Superheated fuel injection modeling: An engineering approach. Int. J. Therm. Sci. 2011, 50(8), 1460-1471. [23] JARCZYK, M., PFITZNER, M. Large eddy simulation of supercritical nitrogen jets. 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. 2012, 1, 1-13. [24] TERASHIMA, H., KOSHI, M. Approach for simulating gas-liquid-like flows under supercritical pressures using a high-order central differencing scheme. J. Comput. Phys. 2012, 231(20), 6907-6923. [25] TERASHIMA, H., KOSHI, M. Strategy for simulating supercritical cryogenic jets using high-order schemes. Comput. Fluids. 2013, 85, 39-46. [26] PARK, T.S. LES and RANS simulations of cryogenic liquid nitrogen jets. J. Supercrit. Fluids. 2012, 72, 232-247. [27] Schuler, M.J., Rothenfluh, T., Von Rohr, P.R. Simulation of the thermal field of submerged supercritical water jets at near-critical pressures. J. Supercrit. Fluids. 2013, 75, 128-137. [28] PETIT, X., RIBERT, G., LARTIGUE, G., DOMINGO, P. Large-eddy simulation of supercritical fluid injection. J. Supercrit. Fluids. 2013, 84, 61-73. [29] ANTUNES, E., SILVA, A.R.R., BARATA, J.M.M. Evaluation of numerical variable density approach to cryogenic jets. 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. 2012, 1, 1-14. [30] ANTUNES, E., SILVA, A., BARATA, J. RANS modeling of transcritical and supercritical nitrogen jets. 53rd AIAA Aerospace Sciences Meeting. 2015, 1, 1-14. [31] CHEHROUDI, B., COHN, R., TALLEY, D. Cryogenic shear layers: Experiments and phenomenological modeling of the initial growth rate under subcritical and supercritical conditions. Int. J. Heat Fluid Flow. 2002, 23, 554-563. [32] ANTUNES E., SILVA A., BARATA J. Variable density approach for modeling of transcritical and supercritical jets. J. Eng. Appl. Sci. 2017. [33] SANDERS, J.P.H., SARH, B., GÖKALP, I. Variable density effects in axisymmetric isothermal turbulent jets: a comparison between a first- and a second-order turbulence model. Int. J. Heat Mass Transf. 1997, 40, 823-842. [34] SOAVE, G. Equilibrium constants from a modified Redlich-Kwong equation of state. Chem. Eng. Sci. 1972, 27(6), 1197-1203. [35] PENG, D.-Y., ROBINSON, D.B. A new two-constant equation. Ind. Eng. Chem. Fundam. 1976, 15(1), 59-64. [36] MEDARD L. Gas encyclopaedia, 1st ed. Amsterdam: Elsevier Science, 1976. |
|||||||||||||
Kolekcja | BazTech | |||||||||||||
Identyfikator YADDA | bwmeta1.element.baztech-eb5cf7df-f910-40e6-9ae6-1b03f079e830 | |||||||||||||
Identyfikatory |
|