Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-eb105756-a58b-490b-a109-55a846833dda

Czasopismo

Eksploatacja i Niezawodność

Tytuł artykułu

Two-terminal reliability analysis for multi-phase communication networks

Autorzy Lu, J.-M.  Innal, F.  Wu, X.-Y.  Liu, Y.  Lundteigen, M. A. 
Treść / Zawartość
Warianty tytułu
PL Analiza niezawodności par terminali w wielofazowych sieciach komunikacyjnych
Języki publikacji EN
Abstrakty
EN Most researches of network reliability generally assume that the system structures do not change with time. This paper presents the concept of multi-phase network systems (MPNS) to consider dynamic characteristics of networks, and analyze the reliability of MPNS. MPNS reliability is evaluated through a cross-phase binary decision diagram (BDD). The BDD-based algorithm can act as a platform to consider various components behaviors such as repair and growing pressure. Case study shows that the proposed MPNS concept is an effective description of some practical communication networks, and the cross-phase BDD model is efficient in analyzing MPNS reliability.
PL Większość badań niezawodności sieci ogólnie przyjąć, że struktury systemu nie zmieniają się w czasie. W artykule przedstawiono koncepcję systemów sieciowych wielofazowych (MPNS) rozpatrywanie dynamicznych właściwości sieci i analizy niezawodności MPNS. MPNS niezawodność jest oceniany przez cross-fazowego schematu decyzyjnego binarny (BDD). Algorytm z siedzibą w BDD może działać jako platforma do rozważenia różnych komponentów zachowań, takich jak naprawy i rosnącej presji. Studium przypadku pokazuje, że proponowana koncepcja MPNS jest skutecznym opis niektórych praktycznych sieci komunikacyjnych, a cross-fazowego modelu BDD jest skuteczny w analizie MPNS niezawodność.
Słowa kluczowe
PL binarny schemat decyzji   model zachowania komponentów   systemów sieciowych wielofazowe   niezawodność systemu  
EN binary decision diagram   component-behavior model   multi-phase network systems   system reliability  
Wydawca Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne
Czasopismo Eksploatacja i Niezawodność
Rocznik 2016
Tom Vol. 18, no. 3
Strony 418--427
Opis fizyczny Bibliogr. 50 poz., rys., tab.
Twórcy
autor Lu, J.-M.
  • College of Information System and Management National University of Defense Technology De Ya Road 109, Changsha, Hunan 410073, China, jeemanlv@gmail.com
autor Innal, F.
  • Department of Production and Quality Engineering Norwegian University of Science and Technology, Valgrinda, N-7491 Trondheim, Norway, innal.fares@hotmail.fr
autor Wu, X.-Y.
  • College of Information System and Management National University of Defense Technology De Ya Road 109, Changsha, Hunan 410073, China, xiaoyuewucn@gmail.com
autor Liu, Y.
  • Department of Production and Quality Engineering Norwegian University of Science and Technology, Valgrinda, N-7491 Trondheim, Norway, yiliu.liu@ntnu.no
autor Lundteigen, M. A.
  • Department of Production and Quality Engineering Norwegian University of Science and Technology, Valgrinda, N-7491 Trondheim, Norway, mary.a.lundteigen@ntnu.no
Bibliografia
1. Aggarwal KK, Chopra YC, Bajwa JS. Modification of cutsets for reliability evaluation of communication systems. Microelectronics Reliability 1982; 22(3): 337-340, http://dx.doi.org/10.1016/0026-2714(82)90005-1.
2. Ahmad SH. Simple enumeration of minimal cutsets of acyclic directed graph. IEEE Transactions on Reliability 1988; 37(5): 484-487, http://dx.doi.org/10.1109/24.9868.
3. Alam M, Alsaggaf UM. Quantitative reliability evaluation of repairable phased-mission systems using Markov approach. IEEE Transactions on Reliability 1986; 35(5): 498-503,http://dx.doi.org/10.1109/TR.1986.4335529.
4. Bartlett LM, Hurdle EE, Kelly EM. Integrated system fault diagnostics utilising digraph and fault tree-based approaches. Reliability Engineering and System Safety 2009, 94(6): 1107-1115, http://dx.doi.org/10.1016/j.ress.2008.12.005.
5. Bartlett LM, Hurdle EE, Kelly EM. Comparison of digraph and fault tree based approaches for system fault diagnostics. Proceedings of the European Safety and Reliability Conference (ESREL) 2006; 1: 191-198.
6. Bollig B, Wegener I. Improving the variable ordering of OBDDs is NP-complete. IEEE Transactions on Computers 1996; 45(9): 993-1002, http://dx.doi.org/10.1109/12.537122.
7. Bouissou M, Bruyere F, Rauzy A. BDD based fault-tree processing: a comparison of variable ordering heuristics. Proceedings of European Safety and Reliability Association Conference (ESREL) 1997, http://dx.doi.org/10.1016/b978-008042835-2/50231-9.
8. Choi MS, Jun CH. Some variants of polygon-to-chain reductions in evaluating reliability of undirected network. Microelectronics Reliability 1995; 35(1): 1-11, http://dx.doi.org/10.1016/0026-2714(94)P1833-X.
9. Colbourn CJ, The combinatorics of network reliability, Oxford University Press: London, 1987.
10. Cook JL, Ramirez-Marquez JE. Two-terminal reliability analyses for a mobile ad hoc wireless network. Reliability Engineering and System Safety 2007. 92(6): 821-829, http://dx.doi.org/10.1016/j.ress.2006.04.021.
11. Friedman SJ, Supowit KJ. Finding the optimal variable ordering for binary decision diagrams. Proceedings of the 24th ACM/IEEE Design Automation Conference 1987: 348-356, http://dx.doi.org/10.1145/37888.37941.
12. Gadani J. System effectiveness evaluation using star and delta transformations. IEEE Transactions on Reliability 1981; 30(1): 43-47, http://dx.doi.org/10.1109/TR.1981.5220959.
13. GRIF-Workshop Software, SATODEV LLC 2014; http://grif-workshop.com/.
14. Hardy G, Lucet C, Limnios N. Computing all-terminal reliability of stochastic networks with binary decision diagrams. 11th International Symposium on Applied Stochastic Models and Data Analysis 2005: 17-20.
15. Hardy G, Lucet C, Limnios N. K-terminal network reliability measures with binary decision diagrams. IEEE Transactions on Reliability 2007; 56(3): 506-515, http://dx.doi.org/10.1109/TR.2007.898572.
16. Hariri S, Raghavendra CS. SYREL: A symbolic reliability algorithm based on path and cutset methods. IEEE Transactions on Computers 1987; 100(10): 1224-1232, http://dx.doi.org/10.1109/TC.1987.1676862.
17. Huang HZ, Zhang H, Li Y. A new ordering method of basic events in fault tree analysis. Quality and Reliability Engineering International 2012; 28(3): 297-305, http://dx.doi.org/10.1002/qre.1245.
18. Kelly EM, Bartlett LM. Enhanced diagnosis of faults using the digraph approach applied to a dynamic aircraft fuel system. Proceedings of the first international conference on availability, reliability and security (ARES) 2006.
19. Kelly EM, Bartlett LM. Application of the digraph method in system fault diagnostices. Proceedings of the first international conference on availability, reliability and security (ARES) 2006, http://dx.doi.org/10.1109/ARES.2006.31.
20. Kim K, Park KS. Phased-mission system reliability under Markov environment. IEEE Transactions on Reliability 1994; 43(2): 301-309, http://dx.doi.org/10.1109/24.295013.
21. Kuo, SY, Lu SK, Yeh FM. Determining terminal-pair reliability based on edge expansion diagrams using OBDD. IEEE Transactions on Reliability 1999. 48(3): 234-246, http://dx.doi.org/10.1109/24.799845.
22. Kuo SY, Yeh FM, Lin HY. Efficient and exact reliability evaluation for networks with imperfect vertices. IEEE Transactions on Reliability 2007; 56(2): 288-300, http://dx.doi.org/10.1109/TR.2007.896770.
23. Locks MO. A minimizing algorithm for sum of disjoint products. IEEE Transactions on Reliability 1987; 36(4): 445-453, http://dx.doi.org/10.1109/TR.1987.5222436.
24. Lu JM, Wu XY. Reliability evaluation of generalized phased-mission systems with repairable components. Reliability Engineering and System Safety 2014; 121: 136-145, http://dx.doi.org/10.1016/j.ress.2013.08.005.
25. Lu JM, Wu XY, Liu Y, Mary Ann Lundteigen, Reliability analysis of large phased-mission systems with repairable components based on success-state sampling, Reliability Engineering and System Safety 2015; 142: 123–133, http://dx.doi.org/10.1016/j.ress.2015.05.010.
26. Netes VA, Filin BP. Consideration of node failures in network-reliability calculation. IEEE Transactions on Reliability 1996; 45(1): 127-128, http://dx.doi.org/10.1109/24.488928.
27. Page LB, Perry JE. Reliability of directed networks using the factoring theorem. IEEE Transactions on Reliability 1989; 38(5): 556-562, http://dx.doi.org/10.1109/24.46479.
28. Rai S, Kumar A, Prasad EV. Computing terminal reliability of computer network. Reliability Engineering 1986; 16(2): 109-119, http://dx.doi.org/10.1016/0143-8174(86)90079-X.
29. Rauzy A. Binary decision diagrams for reliability studies. Handbook of Performability Engineering. Springer: London, 2008: 381-396.
30. Resende LI. Implementation of a factoring algorithm for reliability evaluation of undirected networks. IEEE Transactions on Reliability 1988; 37(5): 462-468, http://dx.doi.org/10.1109/24.9862.
31. Resende MG. A program for reliability evaluation of undirected networks via polygon-to-chain reductions. IEEE Transactions on reliability; 1986; 35(1): 24-29, http://dx.doi.org/10.1109/TR.1986.4335334.
32. Satyanarayana A, Chang MK. Network reliability and the factoring theorem. Networks 1983; 13(1): 107-120, http://dx.doi.org/10.1002/net.3230130107.
33. Singh H, Vaithilingam S, Anne RK. Terminal reliability using binary decision diagrams. Microelectronics Reliability 1996; 36(3): 363-365, http://dx.doi.org/10.1016/0026-2714(95)00087-9.
34. Smotherman MK, Geist RM. Phased mission effectiveness using a nonhomogeneous Markov reward model. Reliability Engineering and System Safety 1990; 27(2): 241-255, http://dx.doi.org/10.1016/0951-8320(90)90057-T.
35. Smotherman MK, Zemoudeh K. A non-homogeneous Markov model for phased-mission reliability analysis. IEEE Transactions on Reliability 1989; 38(5): 585-590, http://dx.doi.org/10.1109/24.46486.
36. Somani AK, Trivedi KS. Phased-mission system analysis using Boolean algebraic methods. Proceedings of ACM/SIGMETRICS conference on Measurement and modeling of computer systems 1994: 98-107, http://dx.doi.org/10.1145/183019.183029.
37. Tang ZH, Dugan JB, BDD-based reliability analysis of phased-mission systems with multimode failures. IEEE Transactions on Reliability 2006; 55(2): 350-360, http://dx.doi.org/10.1109/TR.2006.874941.
38. Theologou OR, Carlier JG. Factoring and reductions for networks with imperfect vertices. IEEE Transactions on Reliability 1991; 40(2): 210-217, http://dx.doi.org/10.1109/24.87131.
39. Torrieri D. Calculation of node-pair reliability in large networks with unreliable nodes. IEEE Transactions on Reliability 1994; 43(3): 375-377, http://dx.doi.org/10.1109/24.326428.
40. Vaurio JK. Fault tree analysis of phased mission systems with repairable and non-repairable components. Reliability Engineering and System Safety 2001; 74(2): 169-180, http://dx.doi.org/10.1016/S0951-8320(01)00075-8.
41. Wang D, Trivedi KS, Reliability analysis of phased-mission system with independent component repairs. IEEE Transactions on Reliability 2007; 56(3): 540-551, http://dx.doi.org/10.1109/TR.2007.903268.
42. Windchill Quality Solutions (formerly Relex) Version 10 Software, PTC Product & Service Advantage LLC 2014; http://www.ptc.com/product/windchill.
43. Wood RK. A factoring algorithm using polygon-to-chain reductions for computing K-terminal network reliability. Networks 1985; 15(2): 173-190, http://dx.doi.org/10.1002/net.3230150204.
44. Wu XY. Reliability modeling and reliability analysis of complex correlative systems. PhD degree thesis of National University of Defense Technology China, 2000.
45. Xing L, Levitin G. BDD-based reliability evaluation of phased-mission systems with internal/ external common-cause failures. Reliability Engineering and System Safety 2013; 112: 145-153, http://dx.doi.org/10.1016/j.ress.2012.12.003.
46. Xing L. Reliability evaluation of phased-mission systems with imperfect fault coverage and common-cause failures. IEEE Transactions on Reliability 2007; 56(1): 58-68, http://dx.doi.org/10.1109/TR.2006.890900.
47. Xing L. An efficient binary-decision-diagram-based approach for network reliability and sensitivity analysis. IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans 2008; 38(1): 105-115, http://dx.doi.org/10.1109/TSMCA.2007.909493.
48. Xing L, Dugan JB, Morrissette BA. Efficient reliability analysis of systems with functional dependence loops. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2009; 43(3): 65-69.
49. Zang X, Sun H, Trivedi KS. A BDD-based algorithm for reliability analysis of phased-mission systems. IEEE Transactions on Reliability 1999; 48(1): 50-60, http://dx.doi.org/10.1109/24.765927.
50. Zhang T, Bai GH, Guo B. Success probability model of phased mission systems with limited spares. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2012; 14(1): 24-32.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-eb105756-a58b-490b-a109-55a846833dda
Identyfikatory
DOI 10.17531/ein.2016.3.14