Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-eabd0408-e4ce-43dc-8300-b11c6c7fb010

Czasopismo

Acta of Bioengineering and Biomechanics

Tytuł artykułu

Experimental testing and constitutive modeling of the mechanical properties of the swine skin tissue

Autorzy Łagan, S. D.  Liber-Kneć, A. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
Abstrakty
EN The aim of the study was an estimation of the possibility of using hyperelastic material models to fit experimental data obtained in the tensile test for the swine skin tissue. Methods: The uniaxial tensile tests of samples taken from the abdomen and back of a pig was carried out. The mechanical properties of the skin such as the mean Young’s modulus, the mean maximum stress and the mean maximum elongation were calculated. The experimental data have been used to identify the parameters in specific strain-energy functions given in seven constitutive models of hyperelastic materials: neo-Hookean, Mooney–Rivlin, Ogden, Yeoh, Martins, Humphrey and Veronda–Westmann. An analysis of errors in fitting of theoretical and experimental data was done. Results: Comparison of load –displacement curves for the back and abdomen regions of skin taken showed a different scope of both the mean maximum loading forces and the mean maximum elongation. Samples which have been prepared from the abdominal area had lower values of the mean maximum load compared to samples from the spine area. The reverse trend was observed during the analysis of the values of elongation. An analysis of the accuracy of model fitting to the experimental data showed that, the least accurate were the model of neo- -Hookean, model of Mooney–Rivlin for the abdominal region and model of Veronda–Westmann for the spine region. Conclusions: An analysis of seven hyperelastic material models showed good correlations between the experimental and the theoretical data for five models.
Słowa kluczowe
PL materiał hipersprężysty   tkanka miękka   próba rozciągania   model konstytutywny  
EN hyperelastic material   soft tissue   tensile test   pig’s skin   constitutive model  
Wydawca Oficyna Wydawnicza Politechniki Wrocławskiej
Czasopismo Acta of Bioengineering and Biomechanics
Rocznik 2017
Tom Vol. 19, nr 2
Strony 93--102
Opis fizyczny Bibliogr. 25 poz., wykr.
Twórcy
autor Łagan, S. D.
  • Institute of Applied Mechanics, Cracow University of Technology, Cracow, Poland
autor Liber-Kneć, A.
  • Institute of Applied Mechanics, Cracow University of Technology, Cracow, Poland, aliber@pk.edu.pl
Bibliografia
[1] Adull Manan N.F., Azizzati S.N., Noor M., Azmi N.N., Mahmud J., Numerical investigation of Ogden and Mooney-Rivlin material parameters, ARPN Journal of Engineering and Applied Sciences, 2015, 10(15):6329-6335.
[2] Annaidh A.N., Bruyere K., Destrade M., Gilchrist M.D., Maurini C., Ottenio M., Saccomandi G., Automated estimation of collagen fiber dispersion in the dermis and its contribution to the anisotropic behavior of skin, Annals of Biomedical Engineering, 2012, 40(8):1666-1678.
[3] Boyer G., Laquieze1 L, Le Bot1 A., Laquieze S., Zahouani H., Dynamic indentation on human skin in vivo: ageing effects, Skin Research and Technology, 2009, 15:55-67.
[4] Brouwer I., Ustin J., Bentley L., Sherman A., Dhruv N., Tendick F., Measuring in vivo animal soft tissue properties for haptic modeling in surgical simulation, Studies in Health Technology and Informatics, 2001, 81:69-74.
[5] Corr D.T., Hart D.A., Biomechanics of Scar Tissue and Uninjured Skin, Advances in Wound Care, 2013, 2(2):37-43.
[6] Flaten G.E., Palac Z., Engesland A., Filipovic-Grcic J., Vanic Z , Skalko-Basnet N., In vitro skin models as a tool in optimization of drug formulation, European Journal of Pharmaceutical Sciences, 2015, 75:10-24.
[7] Freeman F., DeVore, J.D, Viscoelastic properties of human skin and processed dermis, Skin Research and Technology, 2001, 7:18-23.
[8] Gallagher A.J., NíAnniadh A., Bruyere K., Otténio M., Xie H., Gilchrist M.D., Dynamic Tensile Properties of Human Skin, IRCOBI Conference 2012, 494-502.
[9] Gąsior-Głogowska, M., Komorowska, M., Hanuza, J., Mączka, M., Zając, A., Ptak, M., Będziński, R., Kobielarz, M., Maksymowicz, K., Kuropka, P., Szotek, S., FT-Raman spectroscopy study of human skin subjected to uniaxial stress, Journal of the Mechanical Behavior of Biomedical Materials, 2013, 18:240–252.
[10] Holzapfel G.A., Biomechanics of Soft Tissue, Computational Biomechanics, Biomech preprint series, 2000.
[11] Jor J.W.Y., Nash M. P., Nielsen P.M.F., Hunter P.J., Estimating material parameters of a structurally based constitutive relation for skin mechanics, Biomechanics and Modeling Mechanobiology, 2011, 10:767-778.
[12] Karimi A., Rahmatic S.M., Navidbakhsh M., Mechanical characterization of the rat and mice skin tissues using histostructural and uniaxial data, Bioengineered, 2015, 6(3):153-160.
[13] Kumar S., Liu G., Schloerb D., Srinivasan M. A., Viscoelastic characterization of the primate finger pad in vivo by micro step indentation and three-dimensional finite element models for tactile sensation studies, Journal of Biomechanical Engineering, 2015, 137:1- 10.
[14] Łagan S., Liber-Kneć A., A characteristic of anisotropic mechanical properties of a pig’s skin, Engineering of Biomaterials, 2014, 17(128-129):61-63.
[15] Latorre M., Montàns F.J., On the tension-compression switch of the Gasser–Ogden– Holzapfel model: Analysis and a new pre-integrated proposal, Journal of the Mechanical Behavior of Biomedical Materials, 2016, 57:175–189.
[16] Lim J., Hong J., Chen W.W., Weerasooriya T., Mechanical response of pig skin under dynamic tensile loading, International Journal of Impact Engineering, 2011, 38:130-135.
[17] Martins P.A.L.S., Natal Jorge R.M., Ferreira A.J.M., A comparative study of several material models for prediction of hyperelastic properties: Application to silicone-rubber and soft tissues, Strain, 2006, 42:135-147.
[18] Moerman K.M., Simms C.K., Nagel T., Control of tension–compression asymmetry in Ogden hyperelasticity with application to soft tissue modeling, Journal of The Mechanical Behavior of Biomedical Materials, 2016, 56:218–228.
[19] Moriera P., Misra S., Biomechanics-based curvature estimation for ultrasound-guided flexible needle steering in biological tissues, Annals of Biomedical Engineering, 2015, 43(8):1716-1726.
[20] Nesbitt S., Scott W., Macione J., Kotha S., Collagen fibrils in skin orient in the direction of applied uniaxial load in proportion to stress while exhibiting differential strains around hair follicles, Materials, 2015, 8:1841-1857.
[21] Ogden R. W., Saccomandi G., Sgura I., Fitting hyperelastic models to experimental data, Computational Mechanics, Springer-Verlag, 2004, 34:484-502.
[22] Stark M.M., Clinical forensic medicine: a physician’s guide. Humana Press, 2005.
[23] Shergold O.A., Fleck N.A., Radford D., The uniaxial stress versus strain response of pig skin and silicone rubber at low and high strain rates, International Journal of Impact Engineering, 2006, 32:1384-1402.
[24] Tepole A.B., Gosain A.K., Kuhl E., Computational modeling of skin: Using stress profiles as predictor for tissue necrosis in reconstructive surgery, Computers and Structures, 2014, 143:32-39.
[25] Żak M., Kuropka P., Kobielarz M., Dudek A., Kaleta-Kuratewicz K., Szotek S., Determination of the mechanical properties of the skin of pig fetuses with respect to its structure, Acta of Bioengineering and Biomechanics, 2011, 13(2): 37-43.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
The work was realized due to statutory activities M-1/6/2016/DS.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-eabd0408-e4ce-43dc-8300-b11c6c7fb010
Identyfikatory
DOI 10.5277/ABB-00755-2016-02