Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button


Archives of Electrical Engineering

Tytuł artykułu

Modeling of linear dispersive materials using scalable time domain finite element scheme

Autorzy Butryło, B. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
EN This paper deals with some aspects of formulation and implementation of a broadband algorithm with build-in analysis of some dispersive media. The construction of the finite element method (FEM) based on direct integration of Maxwell’s equations and solution of some additional convolution integrals is presented. The broadband, fractional model of permittivity is approximated by a set of some relaxation sub-models. The properties of the 3D time-dependent formulation of the FEM algorithm are determined using a benchmark problem with the Cole-Cole and the Davidson-Cole models. Several issues associated with the implementation and some constraints of the broadband finite element algorithm are presented.
Słowa kluczowe
EN dispersive dielectrics   electromagnetic field   finite element method   fractional relaxation   wideband numerical scheme  
Wydawca Polish Academy of Sciences, Electrical Engineering Committee
Czasopismo Archives of Electrical Engineering
Rocznik 2016
Tom Vol. 65, nr 4
Strony 719--732
Opis fizyczny Bibliogr. 15 poz., rys., tab., wz.
autor Butryło, B.
  • Faculty of Electrical Engineering, Bialystok University of Technology ul. Wiejska 45d, 15-351 Białystok, Poland,
[1] Lee W.-J., Kim C.-G., Electromagnetic wave absorbing composites with a square patterned conducting polymer layer for wide band characteristics, Shock and Vibration, no. 1, pp. 1-5 (2014).
[2] Taya M., Electronic composites, Cambridge University Press (2005).
[3] Fourn C., Lasquellec S., Brosseau C., Finite-element modeling method for the study of dielectric relaxation at high frequencies of heterostructures made of multilayered particle, Journal of Applied Physics, vol. 102, no. 12, pp. 124107-11 (2007).
[4] Kalmykov Y.P., Coffey W.T., Crothers D.S.F., Titov S.V., Microscopic models for dielectric relaxation in disordered systems, Physics Review, serie E, vol. 70, no. 4, pp. 041-103 (2004).
[5] Raju G.G., Dielectrics in electric fields, CRC Press (2003).
[6] Butryło B., Parallel computations of electromagnetic fields in models with dispersive materials (in Polish), Bialystok University of Technology (2012).
[7] Charef A., Modeling and analog realization of the fundamental linear fractional order differential equation, Nonlinear Dynamics, vol. 46, pp. 195-210 (2006).
[8] Rao S.M., Time domain electromagnetics. Academic Press (1999).
[9] Oughstun K.E., Electromagnetic and optical pulse propagation, Springer (2006).
[10] Young J.L., Nelson R.O., A summary and systematic analysis of FDTD algorithms for linearly dispersive media, IEEE Antennas and Propagation Magazine, vol. 43, no. 1, pp. 61-77 (2001).
[11] Ramadan O., Unconditionally stable split-step finite difference time domain formulations for double-dispersive electromagnetic materials, Computer Physics Communications, vol. 185, no. 12, pp. 3094-3098 (2014).
[12] Causley M.F., Petropoulos P.G., On the time-domain response of Havriliak-Negami dielectrics, IEEE Transactions on Antennas and Propagation, vol. 61, no. 6, pp. 3182-3189 (2013).
[13] Maradei F., A frequency-dependent WETD formulation for dispersive materials, IEEE Transactions on Magnetics, vol. 37, no. 5, pp. 3303-3306 (2001).
[14] Stoykov N.S., Kuiken T.A., Lowery M.M., Taflove A., Finite-element time-domain algorithms for modeling linear Debye and Lorentz dielectric dispersions at low frequencies, IEEE Transactions on Biomedical Engineering, vol. 50, no. 9, pp. 1100-1107 (2003).
[15] Monk P., Finite element methods for Maxwell's equations, Oxford University Press (2003).
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-ea7c0137-8a09-4e51-9466-cb9d8893ef5f
DOI 10.1515/aee-2016-0050