Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first last
cannonical link button


Acta Geophysica

Tytuł artykułu

Tight Reservoir Properties Derived by Nuclear Magnetic Resonance, Mercury Porosimetry and Computed Microtomography Laboratory Techniques. Case Study of Palaeozoic Clastic Rocks

Autorzy Krakowska, P. I.  Puskarczyk, E. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
EN Results of the nuclear magnetic resonance (NMR) investigations, mercury porosimetry measurements (MP) and computed microtomography (micro-CT), applied to the tight Palaeozoic rocks from the depths lower than 3000 m, were presented to estimate their reservoir potential. NMR signal analysis and interpretation were performed. Based on NMR driven models, permeability and Free Fluid Index were calculated for data sets divided into homogeneous clusters. Computerized mercury porosimetry results visualization and processing provided useful information, as the automatically determined Swanson parameter is correlated with petrophysical properties of rocks. Micro-CT enriched the image of porous space in qualitative and quantitative ways. Homogeneity of pore space structure was discussed using micro-CT approach. Integration of the results in the frame of reservoir parameters from standard laboratory methods and the modern ones resulted in the improvement of methodology for determining the old, deep-seated, hard sedimentary rocks reservoir potential.
Słowa kluczowe
PL paleozoiczne skały osadowe   magnetyczny rezonans jądrowy   porozymetria rtęciowa   mikrotomografia komputerowa  
EN palaeozoic sedimentary rocks   nuclear magnetic resonance   NMR   mercury porosimetry   computed microtomography  
Wydawca Instytut Geofizyki PAN
Czasopismo Acta Geophysica
Rocznik 2015
Tom Vol. 63, no. 3
Strony 789--814
Opis fizyczny Bibliogr. 36 poz., rys., tab., wykr.
autor Krakowska, P. I.
  • Faculty of Geology Geophysics and Environmental Protection, Department of Geophysics, AGH University of Science and Technology, Kraków, Poland,
autor Puskarczyk, E.
  • Faculty of Geology Geophysics and Environmental Protection, Department of Geophysics, AGH University of Science and Technology, Kraków, Poland
[1] Amaefule, J.O., M. Altunbay, D. Tiab, D.G. Kersey, and D.K. Keelan (1993), Enhanced reservoir description: using core and log data to identify hydraulic (flow) units and predict permeability in uncored intervals/wells. In: SPE Ann. Technical Conference and Exhibition, 3-6 October 1993, Houston, USA, SPE 26436-MS, 205-220, DOI: 10.2118/26436-MS.
[2] Andrew, E.R. (1969), Nuclear Magnetic Resonance, Cambridge University Press, Cambridge.
[3] Arns, C.H., F. Bauget, A. Ghous, A. Sakellariou, T.J. Senden, A.P. Sheppard, R.M. Sok, W.V. Pinczewski, J.C. Kelly, and M.A. Knackstedt (2005), Digital core laboratory: Petrophysical analysis from 3d imaging of reservoir core fragments, Petrophysics 46, 4, 260-277.
[4] Bakun-Czubarow, N. (1984), Petrology and elements of geochemistry. In: J. Leliwa- Kopystyński and R. Teisseyre (eds.), Constitution of the Earth’s Interior. Vol. 1, Physics and Evolution of the Earth‘s Interior, PWN - Polish Scientific Publ., Warszawa, Elsevier, Amsterdam, 326-357.
[5] Bielecki, J. (2011), Investigation of complex structures by means of computed tomography method, Ph.D. Thesis, Institute of Nuclear Physics, Polish Academy of Sciences, Poland.
[6] Bielecki, J., S. Bożek, E. Dutkiewicz, R. Hajduk, J. Jarzyna, J. Lekki, T. Pieprzyca, Z. Stachura, Z. Szklarz, and W.M. Kwiatek (2012), Preliminary investigations of elemental content, microporosity, and specific surface area of porous rocks using PIXE and X-ray microtomography techniques, Acta Phys. Pol. 121, 2, 474-479.
[7] Coates, G., and S. Denoo (1981), The producibility answer product, The Tech. Rev. 29, 2, 54-63.
[8] Coates, G.R., L. Xiao, and M.G. Prammer (1999), NMR logging. Principles and Applications, Haliburton Energy Services, Huston, 234 pp.
[9] Czekański, E., and Group in POGC Co. (2012), Carboniferous - prospects of new hydrocarbon reservoirs discoveries, Sci. Works Oil and Gas Inst.182 (in Polish).
[10] Dadlez, R., S. Marek, and J. Pokorski (2000), Geological map of Poland without Cainozoic deposits, scale 1:1 000 000, Polish Geological Institute, Warsaw, Poland.
[11] Dohnalik, M. (2013), Improving the ability of determining reservoir rocks parameters using X-ray computed microtomography, Ph.D. Thesis, AGH University of Science and Technology, Kraków, Poland.
[12] Jarzyna, J., and E. Puskarczyk (2010), Nuclear magnetic resonance (NMR) and mercury porosimetry measurements for permeability determination. In: G. Christofides et al. (eds.), Proc. 19th Congress of the Carpathian-Balkan Geological Association, 23-26 September 2010, Thessaloniki, Greece, Scientific Annals, School of Geology, Sp. Vol. 99, 371-376.
[13] Jarzyna, J.A., P.I. Krakowska, and E. Puskarczyk (2012), Tight Precambrian and Paleozoic reservoirs in the light of petrophysical analysis. In: Proc. 74th EAGE Conference and Exhibition incorporating EUROPEC 2012, 4-7 June 2012, Copenhagen, Denmark, DOI: 10.3997/2214-4609.20148228.
[14] Jaworowski, K., and Z. Mikołajewski (2007), Oil- and gas-bearing sediments of the Main Dolomite (Ca2) in the Międzychód region: a depositional model and the problem of the boundary between the second and third depositional sequences in the Polish Zechstein Basin, Prz. Geol. 55, 12/1, 1017-1024 (in Polish).
[15] Liu, Z.H., C.C. Zhou, L.H. Zhang, D.J. Dai, C.L. Li, L. Zhang, G.Q. Liu, and Y.J. Shi (2007), An innovative method to evaluate formation pore structure using NMR logging data. In: Proc. SPWLA 48th Annual Logging Symposium, 3-6 June 2007, Austin, USA, SPWLA-2007-S.
[16] MacQueen, J.B. (1967), Some methods for classification and analysis of multivariate observations. In: Proc. 5th Berkeley Symp. Mathematical Statistics and Probability, University of California Press, Berkeley, 281-297.
[17] Mao, Z.-Q., L. Xiao, Z.-N. Wang, Y. Jin, X.-G. Liu, and B. Xie (2013), Estimation of permeability by integrating nuclear magnetic resonance (NMR) logs with mercury injection capillary pressure (MICP) data in tight gas sands, Appl. Magn. Reson. 44, 4, 449-468, DOI: 10.1007/s00723-012-0384-z.
[18] Monk, D. (2013), Unconventional reservoir sweet spots from geophysics (editorial), Oilfield Rev. Winter 2013/2014, 1.
[19] Montaron, B. (2008), Connectivity theory - a new approach to modeling “non- Archie” rocks. In: Proc. SPWLA 49th Annual Logging Symposium, 25-28 May 2008, Edinburgh, Scotland, SPWLA-2008-GGGG.
[20] Pittman, E.D. (1992), Relationship of porosity and permeability to various parameters derived from mercury injection-capillary pressure curves for sandstone, AAPG Bull. 76, 2, 191-198.
[21] Puskarczyk, E. (2011), Assessment of reservoir properties of rock through nuclear magnetic resonance phenomenon application, Ph.D. Thesis, AGH University of Science and Technology, Kraków, Poland (in Polish).
[22] Puskarczyk, E. and J. Jarzyna (2012), New method of NMR signals fitting using ‘Distribution’ program. In: Proc. 74th EAGE Conference and Exhibition incorporating EUROPEC 2012, 4-7 June 2012, Copenhagen, Denmark, DOI: 10.3997/2214-4609.20148554.
[23] Semyrka, G., J. Jarzyna, R. Semyrka, M. Kaźmierczuk, and L. Pikulski (2010), Reservoir parameters of lithostratigraphic successions of the lower Paleozoic strata in the Polish part of the Baltic region based on laboratory studies and well logs, Geol. Quart. 54, 2, 227-240.
[24] Straley, Ch., D. Rossini, H. Vinegar, P. Tutunjian, and Ch. Morriss (1997), Core analysis by low-field NMR, The Log Analyst 38, 2, 84-94.
[25] Such, P., G. Leśniak, and M. Słota (2010), Quantitative porosity and permeability characterization of potential Rotliegend tight gas reservoir, Prz. Geol. 58, 4, 345-351 (in Polish).
[26] Swanson, B.F. (1981), A simple correlation between permeabilities and mercury capillary pressures, J. Petrol. Technol. 33, 12, 2498-2504, DOI: 10.2118/ 8234-PA.
[27] Thomeer, J.H. (1983), Air permeability as a function of three pore-network parameters, J. Petrol. Technol. 35, 4, 809-814, DOI: 10.2118/10922-PA.
[28] Vavra, C.L., J.G. Kaldi, and R.M. Sneider (1992), Geological applications of capillary pressure: A review, AAPG Bull. 76, 6, 840-850.
[29] Webb, P.A. (2001), An introduction to the physical characterization of materials by mercury intrusion porosimetry with emphasis on reduction and presentation of experimental data, Micrometrics Instrument Corp., Norcross, USA.
[30] Wojtanowski, K. (2011), Algorithm and application program to processing and interpretation of capillary pressure data, M.Sc. Thesis, AGH University of Science and Technology, FGGEP, Kraków, Poland.
[31] Xiao, L., Z.Q. Mao, Z.X. Xiao, and C. Zhang (2008), A new method to evaluate pore structure consecutively using NMR and capillary pressure data. In: Proc. SPWLA 49th Annual Logging Symposium, 25-28 May 2008, Edinburgh, Scotland, SPWLA-2008-AA.
[32] Xiao, L., X.-P. Liu, C.-C. Zou, X.-X. Hu, Z.-Q. Mao, Y.-J. Shi, H.-P. Guo, and G.-R. Li (2014), Comparative study of models for predicting permeability from nuclear magnetic resonance (NMR) logs in two Chinese tight sandstone reservoirs, Acta Geophys. 62, 1, 116-141, DOI: 10.2478/s11600-013-0165-6.
[33] Zalewska, J., M. Dohnalik, J. Kaczmarczyk, A. Poszytek, G. Sikora, D. Cebulski, M. Masłowski, and E. Biały (2010), X-ray computed microtomography in examination of carbonate rocks, Sci. Works Oil and Gas Inst. 171, 1-263 (in Polish).
[34] Zalewska, J., M. Dohnalik, G. Łykowska, and J. Kiernicki (2011), Laboratory of the rocks and reservoir fluids geophysical parameters, Report no. 37/11/2011, Oil and Gas Institute, Kraków, Poland (in Polish).
[35] Zorski, T. (2009), Recent improvements in interpretation methodology applied in GeoWin SATUN application, AGH Geologia 35, 2/1, 549-557.
[36] Zorski, T., A. Ossowski, J. Środoń, and T. Kawiak (2011), Evaluation of mineral composition and petrophysical parameters by the integration of core analysis data and wireline well log data: the Carpathian Foredeep case study, Clay Minerals 46, 1, 25-45, DOI: 10.1180/claymin.2011.046.1.25.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-ea30ac67-bea5-4f77-8202-fa35e355efa0
DOI 10.1515/acgeo-2015-0013