Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first last
cannonical link button


ECONTECHMOD : An International Quarterly Journal on Economics of Technology and Modelling Processes

Tytuł artykułu

Storage systems for solar energy suitable for agriculture. Part two: electrical energy

Autorzy Kapica, J. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
EN The paper presents various ways to accumulate the energy converted from the solar radiation in the electrical form: electrochemical batteries, grid storage, elevated water tank, hydrogen production and supercapacitors which are suitable for use in agriculture or rural areas. Along with the basic presentation, the most recent developments in each area are presented.
Słowa kluczowe
EN energy storage   photovoltaic   agriculture  
Wydawca Polish Academy of Sciences, Branch in Lublin
Czasopismo ECONTECHMOD : An International Quarterly Journal on Economics of Technology and Modelling Processes
Rocznik 2017
Tom Vol. 6, No 4
Strony 63--69
Opis fizyczny Bibliogr. 53 poz., rys.
autor Kapica, J.
  • Department of Technology Fundamentals, University of Life Sciences in Lublin, ul. Głęboka 28, 20-612 Lublin, Poland,
1. Abdin Z., Webb C. J., Gray E. M., 2015. Modelling and simulation of a proton exchange membrane (PEM) electrolyser cell. Int. J. Hydrog. Energy. 40(39), 13243–57.
2. Atmaja T. D. Amin. 2015. Energy Storage System Using Battery and Ultracapacitor on Mobile Charging Station for Electric Vehicle. Energy Procedia. 68, 429–37.
3. Belmonte N., Girgenti V., Florian P., Peano C., Luetto C., et al. A comparison of energy storage from renewable sources through batteries and fuel cells: A case study in Turin, Italy. Int. J. Hydrog. Energy.
4. Bey M., Hamidat A., Benyoucef B., Nacer T. 2016. Viability study of the use of grid connected photovoltaic system in agriculture: Case of Algerian dairy farms. Renew. Sustain. Energy Rev. 63, 333–45.
5. Bhogilla S. S., Ito H., Kato A., Nakano A., 2016. Experimental study on a laboratory scale Totalized Hydrogen Energy Utilization System for solar photovoltaic application. Appl. Energy. 177, 309–22.
6. Boutelhig A., Hadj Arab A., Hanini S., 2016. New approach to exploit optimally the PV array output energy by maximizing the discharge rate of a directly-coupled photovoltaic water pumping system (DC/PVPS). Energy Convers. Manag. 111, 375–90.
7. Burhan M., Chua K. J. E., Ng K. C., 2016. Long term hydrogen production potential of concentrated photovoltaic (CPV) system in tropical weather of Singapore. Int. J. Hydrog. Energy. 41(38), 16729–42.
8. Burhan M., Chua K. J. E., Ng K. C., 2016. Sunlight to hydrogen conversion: Design optimization and energy management of concentrated photovoltaic (CPV-Hydrogen) system using micro genetic algorithm. Energy. 99, 115–28.
9. Cabrane Z., Ouassaid M., Maaroufi M., Analysis and evaluation of battery-supercapacitor hybrid energy storage system for photovoltaic installation. Int. J. Hydrog. Energy.
10. Carrasco L. M., Narvarte L., Martínez-Moreno F., Moretón R., 2014. In-field assessment of batteries and PV modules in a large photovoltaic rural electrification programme. Energy. 75, 281–88.
11. Chandel S. S., Nagaraju Naik M., Sharma V., Chandel R., 2015. Degradation analysis of 28 year field exposed mono-c-Si photovoltaic modules of a direct coupled solar water pumping system in western Himalayan region of India. Renew. Energy. 78, 193–202.
12. Cho K., Qu Y., Kwon D., Zhang H., Cid C. A., et al. 2014. Effects of anodic potential and chloride ion on overall reactivity in electrochemical reactors designed for solar-powered wastewater treatment. Environ. Sci. Technol. 48(4), 2377–84.
13. Choi P., Bessarabov D. G., Datta R., 2004. A simple model for solid polymer electrolyte (SPE) water electrolysis. Solid State Ion. 175(1–4), 535–39.
14. de Oliveira e Silva G., Hendrick P., 2016. Lead–acid batteries coupled with photovoltaics for increased electricity self-sufficiency in households. Appl. Energy. 178, 856–67.
15. Elkholy M. M., Fathy A., 2016. Optimization of a PV fed water pumping system without storage based on teaching-learning-based optimization algorithm and artificial neural network. Sol. Energy. 139, 199–212.
16. González J. M., Domínguez J. A., Ruiz J. M., Alonso C., 2016. Ultracapacitors utilization to improve the efficiency of photovoltaic installations. Sol. Energy. 134, 484–93.
17. Hoppmann J., Volland J., Schmidt T. S., Hoffmann V. H., 2014. The economic viability of battery storage for residential solar photovoltaic systems – A review and a simulation model. Renew. Sustain. Energy Rev. 39, 1101–18.
18. Jones M. A., Odeh I., Haddad M., Mohammad A. H., Quinn J. C., 2016. Economic analysis of photovoltaic (PV) powered water pumping and desalination without energy storage for agriculture. Desalination. 387, 35–45.
19. Kalogirou S. A., 2014. Chapter 9 - Photovoltaic Systems. In Solar Energy Engineering (Second Edition), pp. 481–540. Boston: Academic Press.
20. Kamalapur G. D., Udaykumar R. Y., 2011. Rural electrification in India and feasibility of Photovoltaic Solar Home Systems. Int. J. Electr. Power Energy Syst. 33(3), 594–99.
21. Khalilnejad A., Abbaspour A., Sarwat A. I., 2016. Multi-level optimization approach for directly coupled photovoltaic-electrolyser system. Int. J. Hydrog. Energy. 41(28), 11884–94.
22. Khatib T., Ibrahim I. A., Mohamed A., 2016. A review on sizing methodologies of photovoltaic array and storage battery in a standalone photovoltaic system. Energy Convers. Manag. 120, 430–48.
23. Khelifa A., Touafek K., Ben Moussa H., Tabet I., 2016. Modeling and detailed study of hybrid photovoltaic thermal (PV/T) solar collector. Sol. Energy. 135, 169–76.
24. Kumar A., Verma V., 2016. Photovoltaic-grid hybrid power fed pump drive operation for curbing the intermittency in PV power generation with grid side limited power conditioning. Int. J. Electr. Power Energy Syst. 82, 409–19.
25. Kumar M., Reddy K. S., Adake R. V., Rao C. V. K. N., 2015. Solar powered micro-irrigation system for small holders of dryland agriculture in India. Agric. Water Manag. 158, 112–19.
26. Laoun B., Khellaf A., Naceur M. W., Kannan A. M., 2016. Modeling of solar photovoltaic-polymer electrolyte membrane electrolyzer direct coupling for hydrogen generation. Int. J. Hydrog. Energy. 41(24), 10120–35.
27. Li Y., Yang J., Song J. 2017. Structure models and nano energy system design for proton exchange membrane fuel cells in electric energy vehicles. Renew. Sustain. Energy Rev. 67, 160–72.
28. Ma T., Yang H., Lu L., 2014. Feasibility study and economic analysis of pumped hydro storage and battery storage for a renewable energy powered island. Energy Convers. Manag. 79, 387–97.
29. Ma T., Yang H., Lu L., Peng J., 2015. Pumped storage-based standalone photovoltaic power generation system: Modeling and techno-economic optimization. Appl. Energy. 137, 649–59.
30. Margeta J., Glasnovic Z., 2012. Theoretical settings of photovoltaic-hydro energy system for sustainable energy production. Sol. Energy. 86(3), 972–82.
31. Mason I. G., Miller A. J. V., 2016. Energetic and economic optimisation of islanded household-scale photovoltaic-plus-battery systems. Renew. Energy. 96, Part A, 559–73.
32. Mojumder J. C., Chong W. T., Ong H. C., Leong K. Y., Abdullah-Al-Mamoon. 2016. An experimental investigation on performance analysis of air type photovoltaic thermal collector system integrated with cooling fins design. Energy Build. 130, 272–85.
33. Mokeddem A., Midoun A., Kadri D., Hiadsi S., Raja I. A., 2011. Performance of a directly-coupled PV water pumping system. Energy Convers. Manag. 52(10), 3089–95.
34. Muhsen D. H., Ghazali A. B., Khatib T., Abed I. A., Natsheh E. M., 2016. Sizing of a standalone photovoltaic water pumping system using a multi-objective evolutionary algorithm. Energy. 109, 961–73.
35. Narayanan R., Kumar P. N., Deepa M., Srivastava A. K., 2015. Combining Energy Conversion and Storage: A Solar Powered Supercapacitor. Electrochimica Acta. 178, 113–26.
36. Ng C. H., Lim H. N., Hayase S., Harrison I., Pandikumar A., Huang N. M., 2015. Potential active materials for photo-supercapacitor: A review. J. Power Sources. 296, 169–85
37. Nyholm E., Goop J., Odenberger M., Johnsson F. 2016. Solar photovoltaic-battery systems in Swedish households – Self-consumption and self-sufficiency. Appl. Energy. 183, 148–59.
38. Oruc M. E., Desai A. V., Kenis P. J. A., Nuzzo R. G., 2016. Comprehensive energy analysis of a photovoltaic thermal water electrolyzer. Appl. Energy. 164, 294–302.
39. Özgirgin E., Devrim Y., Albostan A., 2015. Modeling and simulation of a hybrid photovoltaic (PV) module-electrolyzer-PEM fuel cell system for micro-cogeneration applications. Int. J. Hydrog. Energy. 40(44), 15336–42.
40. Pavković D., Lobrović M., Hrgetić M., Komljenović A., 2016. A design of cascade control system and adaptive load compensator for battery/ultracapacitor hybrid energy storage-based direct current microgrid. Energy Convers. Manag. 114, 154–67.
41. Rahim A. H. A., Tijani A. S., Fadhlullah M., Hanapi S., Sainan K. I., 2015. Optimization of Direct Coupling Solar PV Panel and Advanced Alkaline Electrolyzer System. Energy Procedia. 79, 204–11.
42. Rahrah K., Rekioua D., Rekioua T., Bacha S., 2015. Photovoltaic pumping system in Bejaia climate with battery storage. Int. J. Hydrog. Energy. 40(39), 13665–75.
43. Rajani S. V., Pandya V. J., Shah V. A., 2016. Experimental validation of the ultracapacitor parameters using the method of averaging for photovoltaic applications. J. Energy Storage. 5, 120–26.
44. Serir C., Rekioua D., Mezzai N., Bacha S., Supervisor control and optimization of multi-sources pumping system with battery storage. Int. J. Hydrog. Energy
45. Spendelow J., Marcinkoski J., 2013. Fuel Cell System Cost - 2013.
46. Stoppato A., Cavazzini G., Ardizzon G., Rossetti A., 2014. A PSO (particle swarm optimization)-based model for the optimal management of a small PV(Photovoltaic)-pump hydro energy storage in a rural dry area. Energy. 76, 168–74.
47. Su Z., Ding S., Gan Z., Yang X., 2016. Analysis of a photovoltaic-electrolyser direct-coupling system with a V-trough concentrator. Energy Convers. Manag. 108, 400–410.
48. Syrotyuk S., Syrotyuk V., Halchak V., Tokmyna A., Chochowski A., Sosnowski S., 2016. Comparative research of efficiency of photovoltaic power systems. ECONTECHMOD Int. Q. J. Econ. Technol. Model. Process. Vol. 5, No 3.
49. Ursúa A., Barrios E. L., Pascual J., San Martín I., Sanchis P., 2016. Integration of commercial alkaline water electrolysers with renewable energies: Limitations and improvements. Int. J. Hydrog. Energy. 41(30), 12852–61.
50. Ursúa A., San Martín I., Barrios E. L., Sanchis P., 2013. Stand-alone operation of an alkaline water electrolyser fed by wind and photovoltaic systems. Int. J. Hydrog. Energy. 38(35), 14952–67.
51. Valer L. R., Melendez T. A., Fedrizzi M. C., Zilles R., de Moraes A. M., 2016. Variable-speed drives in photovoltaic pumping systems for irrigation in Brazil. Sustain. Energy Technol. Assess. 15, 20–26.
52. Yazdanifard F., Ebrahimnia-Bajestan E., Ameri M., 2016. Investigating the performance of a water-based photovoltaic/thermal (PV/T) collector in laminar and turbulent flow regime. Renew. Energy. 99, 295–306.
53. Zaghib K., Mauger A., Julien C. M., 2015. 12 - Rechargeable lithium batteries for energy storage in smart grids A2 - Franco, Alejandro A. In Rechargeable Lithium Batteries, pp. 319–51. Woodhead Publishing.
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-e77aab4b-73e0-4f8f-9bfc-b0a8b60c665d