PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Performance assessment of NASA POWER temperature product with different time scales in Iran

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Języki publikacji
EN
Abstrakty
EN
With the expansion of science and technology worldwide, various satellite products of meteorological parameters have been developed, which can compensate for the lack of observational data. However, to use these products effectively, their accuracy needs to be verified. Therefore, this study investigates the precision of NASA POWER satellite minimum and maximum air temperature data in 70 synoptic stations in Iran from 1987 to 2018. The study examines the data on three-time scales, with 0.5 degree spatial resolution. The findings indicate that the degree of exactness in the NASA POWER temperature data was greater during the monthly interval. The performance of the minimum and maximum air temperature data of the NASA POWER database has been relatively constant in different latitudes. However, changes in the performance of NASA POWER products in stations with different altitudes indicate that the performance of maximum air temperature is better in stations with an altitude of > 1900 m.a.s.l. On the other hand, altitude greatly affects the accuracy of the performance of the satellite model's maximum air temperature. On a daily and monthly time scale, altitude does not significantly impact the minimum temperature data, but on an annual scale, NASA POWER products perform better at low-altitude stations. Hence, the RMSE error values are lower in stations with an altitude of 400-700 m.a.s.l (RMSE = 2.8 °C) than in stations with an altitude of > 1900 m.a.s.l (RMSE = 6.9 °C). NASA-POWER products perform better in summer than in winter. The RMSE error values in the hot months of the year were between 2.64 and 2.81 °C all over Iran, while the minimum temperature in the cold months of the year was between 6.26 and 7.48 °C, which is significantly different. The research also showed that NASA POWER data are more accurate at maximum temperature than at minimum temperature, and these products have less accuracy at minimum temperatures in cold regions. Additionally, the results showed that the error rate in minimum and maximum data in dry and hot regions was less than in other regions, and this satellite product had a more acceptable performance in detecting the temperature of hot and desert regions. The investigation of diverse return periods of minimum and maximum air temperatures elucidates that in arid and parched areas, the maximum air temperature escalates as the return period amplifies; conversely, in hilly and moist regions, the minimum air temperature heightens with the upsurge of the return period. The consequences garnered from this exploration can be employed in meteorological and climatologic analyses and drought inquiries.
Czasopismo
Rocznik
Strony
1175--1189
Opis fizyczny
Bibliogr. 46 poz.
Twórcy
  • Department of Civil Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
  • Department of Civil Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
  • New Era and Development in Civil Engineering Research Group, Scientific Research Center, Al-Ayen University, Nasiriyah, Thi-Qar 64001, Iraq
  • Department of Civil Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
Bibliografia
  • 1. Aboelkhair H, Morsy M, El Afandi G (2019) Assessment of agroclimatology NASA POWER reanalysis datasets for temperature types and relative humidity at 2 m against ground observations over Egypt. Adv Space Res 64(1):129-142. https://doi.Org/10.1016/j. asr.2019.03.032
  • 2. Al-Kilani MR, Rahbeh M, Al-Bakri J, Tadesse T, Knutson C (2021) Evaluation of remotely sensed precipitation estimates from the NASA POWER project for drought detection over Jordan. Earth Syst Environ 5(3):561-573. https://doi.org/10.1007/S41748-021-00245-2/METRICS
  • 3. Alexandersson H (1986) A homogeneity test applied to precipitation data. J Climatol 6(6):661-675. https://doi.org/10.1002/J0C.33700 60607
  • 4. Alijanian M, Rakhshandehroo GR, Mishra AK, Dehghani M, Alija-nian M, Rakhshandehroo GR, Mishra AK, Dehghani M (2017) Evaluation of satellite rainfall climatology using CMORPH, PERSIANN-CDR, PERSIANN, TRMM. MSWEP over Iran Ijcli 37(14):4896-4914. https://doi.org/10.1002/J0C.5131
  • 5. Bai J, Chen X, Dobermann A, Yang H, Cassman KG, Zhang F (2010) Evaluation of NASA satellite-and model-derived weather data for simulation of maize yield potential in China. Agron J. https://doi. org/10.2134/agronj2009.0085
  • 6. Bao X, Zhang F (2013) Evaluation of NCEP-CFSR, NCEP-NCAR, ERA-Interim, and ERA-40 reanalysis datasets against independent sounding observations over the Tibetan Plateau. J Clim 26(1):206-214. https://doi.org/10.1175/JCLI-D-12-00056.1
  • 7. Bonnet R, Boé J, Habets F (2020) Influence of multidecadal variability on high and low flows: the case of the Seine basin. Hydrol Earth Syst Sci 24(4):1611-1631. https://doi.org/10.5194/ HESS-24-1611-2020
  • 8. Chandler WS (2011) NASA’s prediction of worldwide energy resource (P0WER) web services. AMS
  • 9. Chen G, Iwasaki T, Qin H, Sha W (2014) Evaluation of the WarmSeason Diurnal Variability over East Asia in Recent Reanalyses JRA-55, ERA-Interim, NCEP CFSR, and NASA MERRA. J Clim 27(14):5517-5537. https://doi.org/10.1175/JCLI-D-14-00005.1
  • 10. Chen S, Gan TY, Tan X, Shao D, Zhu J (2019) Assessment of CFSR, ERA-Interim, JRA-55, MERRA-2, NCEP-2 reanalysis data for drought analysis over China. Clim Dyn 53(1):737-757. https:// doi.org/10.1007/S00382-018-04611-1
  • 11. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553-597. https://doi.org/ 10.1002/QJ.828
  • 12. Drapera CS, Reichle RH, Koster RD (2018) Assessment of MERRA-2 land surface energy flux estimates. J Clim 31(2):671-691. https:// doi.org/10.1175/JCLI-D-17-0121.1
  • 13. Hanus S, Hrachowitz M, Zekollari H, Schoups G, Vizcaino M, Kaitna R (2021) Future changes in annual, seasonal and monthly runoff signatures in contrasting alpine catchments in Austria. Hydrol Earth Syst Sci 25(6):3429-3453. https://doi.org/10.5194/ HESS-25-3429-2021
  • 14. Hazra A, Maggioni V, Houser P, Antil H, Noonan M (2019) A Monte Carlo-based multi-objective optimization approach to merge different precipitation estimates for land surface modeling. J Hydrol 570(454):462. https://doi.org/10.1016/j.jhydrol.2018.12.039
  • 15. Kadhim Tayyeh H, Mohammed R (2023) Analysis of NASA POWER reanalysis products to predict temperature and precipitation in Euphrates river basin. J Hydrol 619:129327. https://doi.org/10. 1016/j.jhydrol.2023.129327
  • 16. Kanamitsu M, Ebisuzaki W, Woollen J, Yang SK, Hnilo JJ, Fiorino M, Potter GL (2002) NCEP-DOE AMIP-II reanalysis (R-2). Bull Am Meteor Soc 83(11):1631-1644. https://doi.org/10.1175/ BAMS-83-11-1631
  • 17. Kheyruri Y, Nikaein E, Sharafati A (2023a) Spatial monitoring of meteorological drought characteristics based on the NASA POWER precipitation product over various regions of Iran. Environ Sci Pollut Res 2023:1-22. https://doi.org/10.1007/ S11356-023-25283-3
  • 18. Kheyruri Y, Sharafati A (2022) Spatiotemporal assessment of the NASA POWER satellite precipitation product over different regions of Iran. Pure Appl Geophys 2022:1-13. https://doi.org/ 10.1007/S00024-022-03133-6
  • 19. Kheyruri Y, Sharafati A, Shahid S (2023b) Evaluation of the impact of large-scale atmospheric indicators and meteorological variables on drought in different regions of Iran. Environ Earth Sci. https:// doi.org/10.1007/S12665-023-11015-W
  • 20. Kobayashi S, Ota Y, Harada Y, Ebita A, Moriya M, Onoda H, Onogi K, Kamahori H, Kobayashi C, Endo H, Miyaoka K, Kiyotoshi T (2015) The JRA-55 reanalysis: general specifications and basic characteristics. J Meteorol Soc Japan Ser II 93(1):5-48. https:// doi.org/10.2151/JMSJ.2015-001
  • 21. Legates DR, McCabe GJ (1999) Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resour Res 35(1):233-241. https://doi.org/10.1029/1998W R900018
  • 22. Mary SR, Zaal MH, Pour MH (2022) Factors in the formation of visitor’s environmentally responsible behavior (ERB) in damavand mountain Iran. J Ecotourism. https://doi.org/10.1080/14724049. 2022.2147939
  • 23. Marzouk OA (2021) Assessment of global warming in Al Buraimi, sultanate of Oman based on statistical analysis of NASA POWER data over 39 years, and testing the reliability of NASA POWER against meteorological measurements. Heliyon 7(3):e06625. https://doi.org/10.1016/J.HELIYON.2021.E06625
  • 24. Maurer EP, O’Donnell GM, Lettenmaier DP, Roads JO (2001) Evaluation of the land surface water budget in NCEP/NCAR and NCEP/ DOE reanalyses using an off-line hydrologic model. J Geophys Res: Atmos 106(D16):17841-17862. https://doi.org/10.1029/ 2000JD900828
  • 25. Modarres R (2006) Regional precipitation climates of Iran. J Hydrol 45(1):15
  • 26. Monteiro LA, Sentelhas PC, Pedra GU (2018) Assessment of NASA/ POWER satellite-based weather system for Brazilian conditions and its impact on sugarcane yield simulation. Int J Climatol 38(3):1571-1581. https://doi.org/10.1002/JOC.5282
  • 27. Muelchi R, Rössler O, Schwanbeck J, Weingartner R, Martius O (2021) River runoff in Switzerland in a changing climate—changes in moderate extremes and their seasonality. Hydrol Earth Syst Sci 25(6):3577-3594. https://doi.org/10.5194/HESS-25-3577-2021
  • 28. Negm A, Jabro J, Provenzano G (2017) Assessing the suitability of American national aeronautics and space administration (NASA) agro-climatology archive to predict daily meteorological variables and reference evapotranspiration in Sicily, Italy. Agric for Meteorol 244-245:111-121. https://doi. org/10.1016/J.AGRFORMET.2017.05.022
  • 29. Reichle RH, Draper CS, Liu Q, Girotto M, Mahanama SPP, Koster RD, De Lannoy GJM (2017) Assessment of MERRA-2 land surface hydrology estimates. J Clim 30(8):2937-2960. https:// doi.org/10.1175/JCLI-D-16-0720.1
  • 30. Rienecker MM, Suarez MJ, Gelaro R, Todling R, Bacmeister J, Liu E, Bosilovich MG, Schubert SD, Takacs L, Kim GK, Bloom S, Chen J, Collins D, Conaty A, Da Silva A, Gu W, Joiner J, Koster RD, Lucchesi R, Woollen J (2011) MERRA: NASA’s modern-era retrospective analysis for research and applications. J Clim 24(14):3624-3648. https://doi.org/10.1175/JCLI-D-11-00015.1
  • 31. Ringard J, Chiriaco M, Bastin S, Habets F (2019) Recent trends in climate variability at the local scale using 40 years of observations: the case of the Paris region of France. Atmos Chem Phys 19(20):13129-13155. https://doi.org/10.5194/ ACP-19-13129-2019
  • 32. Rockett PL, Campos IL, Baes CF, Tulpan D, Miglior F, Schenkel FS (2023) Phenotypic analysis of heat stress in Holsteins using test-day production records and NASA POWER meteorological data. J Dairy Sci 106(2):1142-1158. https://doi.org/10.3168/ JDS.2022-22370
  • 33. Rodrigues GC, Braga RP (2021) Evaluation of nasa power reanalysis products to estimate daily weather variables in a hot summer mediterranean climate. Agronomy 11(6):1207. https://doi.org/ 10.3390/AGRONOMY11061207/S1
  • 34. Rodrigues GC, Braga RP, Gonęalves M (2021) Evaluation of NASA POWER reanalysis products to estimate daily weather variables in a hot summer mediterranean climate. Agronomy. https://doi. org/10.3390/agronomy11061207
  • 35. Saha A, Pal SC, Chowdhuri I, Roy P, Chakrabortty R, Shit M (2022) Vulnerability assessment of drought in India: Insights from meteorological, hydrological, agricultural and socio-economic perspectives. Gondwana Res. https://doi.org/10.1016/J.GR. 2022.11.006
  • 36. Schneider DP, Deser C, Fasullo J, Trenberth KE (2013) Climate data guide spurs discovery and understanding. EOS Trans Am Geophys Union 94(13):121-122. https://doi.org/10.1002/2013E O130001
  • 37. Sheffield J, Ziegler AD, Wood EF, Chen Y (2004) Correction of the high-latitude rain day anomaly in the NCEP NCAR reanalysis for land surface hydrological modeling. J Clim 17(19):3814-3828. https://doi.org/10.1175/1520-0442(2004)017
  • 38. Shiau J-T, Shen HW (2001) Recurrence analysis of hydrologic droughts of differing severity. J Water Resour Plan Manag 127(1):30-40. https://doi.org/10.1061/(ASCE)0733-9496(2001) 127:1(30)
  • 39. Shiau JT, Wang HY, Tsai CT (2006) Bivariate frequency analysis of floods using copulas1. JAWRA J Am Water Resour Assoc 42(6):1549-1564. https://doi.org/10.1111/J.1752-1688.2006. TB06020.X
  • 40. Strohmenger L, Ackerer P, Belfort B, Pierret MC (2022) Local and seasonal climate change and its influence on the hydrological cycle in a mountainous forested catchment. J Hydrol 610:127914. https:// doi.org/10.1016/J.JHYDROL.2022.127914
  • 41. Strohmenger L, Fovet O, Akkal-Corfini N, Dupas R, Durand P, Fau-cheux M, Gruau G, Hamon Y, Jaffrezic A, Minaudo C, Petitjean P, Gascuel-Odoux C (2020) Multitemporal relationships between the hydroclimate and exports of carbon, nitrogen, and phosphorus in a small agricultural watershed. Water Resour Res 56(7):e2019WR026323. https://doi.org/10.1029/2019WR026323
  • 42. Trenberth KE, Guillemot CJ (1998) Evaluation of the atmospheric moisture and hydrological cycle in the NCEP/NCAR reanalyses. Clim Dyn 14(3):213-231. https://doi.org/10.1007/S003820050 219
  • 43. Tsujino H, Urakawa S, Nakano H, Small RJ, Kim WM, Yeager SG, Danabasoglu G, Suzuki T, Bamber JL, Bentsen M, Böning CW, Bozec A, Chassignet EP, Curchitser E, Boeira Dias F, Durack PJ, Griffies SM, Harada Y, Ilicak M, Yamazaki D (2018) JRA-55 based surface dataset for driving ocean-sea-ice models (JRA55-do). Ocean Model 130:79-139. https://doi.Org/10.1016/J. OCEMOD.2018.07.002
  • 44. Van Wart J, Grassini P, Yang H, Claessens L, Jarvis A, Cassman KG (2015) Creating long-term weather data from thin air for crop simulation modeling. Agric for Meteorol 209-210:49-58. https:// doi.org/10.1016/J.AGRFORMET.2015.02.020
  • 45. Vicente-Serrano SM, Beguería S, López-Moreno JI (2010) A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J Clim 23(7):1696-1718. https://doi.org/10.1175/2009jcli2909.1
  • 46. White JW, Hoogenboom G, Stackhouse PW, Hoell JM (2008) Evaluation of NASA satellite- and assimilation model-derived longterm daily temperature data over the continental US. Agric for Meteorol 148(10):1574-1584. https://doi.org/10.1016/J.AGRFO RMET.2008.05.017
Identyfikator YADDA
bwmeta1.element.baztech-e74c9582-7727-4e7e-8986-7789dcc70e97