Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Zastosowanie bakteriofagów jako środków ochrony żywności. Cz. 2

Warianty tytułu
Application of bacteriophages in food protection. Part 2
Języki publikacji
Bakteriofagi zostały dopuszczone do stosowania w ochronie żywności. Wiele badań naukowych potwierdza ich skuteczność względem bakterii patogennych zakażających produkty spożywcze. W artykule przedstawiono możliwości zastosowania bakteriofagów w celu zapewnienia czystości mikrobiologicznej żywności pochodzenia roślinnego i zwierzęcego. Omówiono przykłady ochrony roślin, terapii zwierząt, biosanitacji, biokontroli i konserwacji żywności z zastosowaniem preparatów bakteriofagowych.
Bacteriophages have been approved for the application in food protection. Many scientific studies confirm their efficacy with respect to pathogenic bacteria that infect food products. In this paper, the possibility of using bacteriophages in ensuring the microbiological purity of food of plant and animal origin is discussed There were described the examples of plant protection, animal therapy, bio-sanitation, bio-control and preservation of foods, using bacteriophage preparations.
Opis fizyczny
Bibliogr. 48 poz.
  • Katedra Biotechnologii i Mikrobiologii Żywności, Uniwersytet Przyrodniczy w Poznaniu
  • Katedra Biotechnologii i Mikrobiologii Żywności, Uniwersytet Przyrodniczy w Poznaniu
  • Katedra Biotechnologii i Mikrobiologii Żywności, Uniwersytet Przyrodniczy w Poznaniu
  • [1] Abuladze T., Li M., Menetrez M.Y., Dean T., Senecal A., Sulakvelidze A.: 2008. Bacteriophages reduce experimental contamination of hard surfaces, tomato, spinach, broccoli, and ground beef by Escherichia coli O157:H7. Appl. Environ. Microbiol. Oct.; 74(20):6230-8.
  • [2] Anany H., Chen W., Pelton R., Griffiths M.W.: 2011. Biocontrol of Listeria monocytogenes and Escherichia coli O157:H7 in meat by using phages immobilized on modified cellulose membranes. Appl Environ Microbiol. Sep.; 77(18):6379-87.
  • [3] Andreoletti O., Budka H., Buncic S., Colin P., Collins J.D., De Koeijer A., Gryffin J., Havelaar A., Hope J., Klein G., Kruse H., Magnino S., Lopez M., McLauchlin J., Nguyen-The C., Noeckler K., Noerrung B., Maradona M.P., Roberts T., Vagsholn I., Vanopolenbosh E.: 2009. The use and mode of action of bacteriophages in food production. The EFSA J.; 1076:1-26.
  • [4] Atterbury R.J., Van Bergen M.A., Ortiz F., Lovell M.A., Harris J.A., De Boer A., Wagenaar J.A., Allen V.M., Barrow P.A.: 2007. Bacteriophage therapy to reduce Salmonella colonization of broiler chickens. Appl. Environ. Microbiol. Jul.; 73(14):4543-9.
  • [5] Bardina C., Spricigo D.A., Cortés P., Llagostera M.: 2012. Significance of the bacteriophage treatment schedule in reducing Salmonella colonization of poultry. Appl. Environ. Microbiol. Sep; 78(18):6600-7.
  • [6] Bigot B., Lee W.J., McIntyre L., Wilson T., Hudson J.A., Billington C., Heinemann J.A.: 2011. Control of Listeria monocytogenes growth in a ready-to-eat poultry product using a bacteriophage. Food Microbiol. Dec.; 28(8):1448-52.
  • [7] Callaway T.R., Edrington T.S., Brabban A.D., Anderson R.C., Rossman M.L., Engler M. J., Carr M.A., Genovese K.J., Keen J.E., Looper M.L., Kutter E.M., Nisbet D.J.: 2008. Bacteriophage isolated from feedlot cattle can reduce Escherichia coli O157:H7 populations in ruminant gastrointestinal tracts. Foodborne Pathog Dis. Apr.; 5(2):183-91.
  • [8] Carvalho C.M., Gannon B.W., Halfhide D.E., Santos S.B., Hayes C.M., Roe J.M., Azeredo J.: 2010. The in vivo efficacy of two administration routes of a phage cocktail to reduce numbers of Campylobacter coli and Campylobacter jejuni in chickens. BMC Microbiol. Sep.; 1;10:232.
  • [9] Chibeu A., Agius L., Gao A., Sabour P.M., Kropinski A.M., Balamurugan S.: 2013. Efficacy of bacteriophage Listex™P100 combined with chemical antimicrobials in reducing Listeria monocytogenes in cooked turkey and roast beef. Int. J. Food Microbiol. Oct.; 15;167(2):208-14.
  • [10] Dias R.S., Eller M.R., Duarte V.S., Pereira Â.L., Silva C.C., Mantovani H.C., Oliveira L.L., Silva Ede A., De Paula S.O.: 2013. Use of phages against antibiotic-resistant Staphylococcus aureus isolated from bovine mastitis. J. Anim. Sci. Aug.; 91(8):3930-9.
  • [11] Ferguson S., Roberts C., Handy E., Sharma M.: 2013. Lytic bacteriophages reduce Escherichia coli O157: H7 on fresh cut lettuce introduced through cross-contamination. Bacteriophage. Jan. 1; 3(1):e24323.
  • [12] Gajda-Wyrębek J.: 2009. Bezpieczeństwo żywności – nowe podejście Unii Europejskiej. Przemysł Spożywczy; 2:2-6
  • [13] Gliński Z., Buczek J., Kostro K., Buczek K.: 2003. Bakteriofagi w terapii chorób bakteryjnych ludzi i zwierząt. Medycyna Weterynaryjna; 59 (3):187-190.
  • [14] Goode D., Allen V.M., Barrow P.A.: 2003. Reduction of experimental Salmonella and Campylobacter contamination of chicken skin by application of lytic bacteriophages. Appl. Environ. Microbiol. Aug.; 69(8):5032-6.
  • [15] Greer G.G.: 2005. Bacteriophage control of foodborne bacteria. J. Food Prot. May; 68(5):1102-11. Review. Erratum in: J. Food Prot. Jul.; 68(7):1334.
  • [16] Guenther S., Herzig O., Fieseler L., Klumpp J., Loessner M.J.: 2012. Biocontrol of Salmonella Typhimurium in RTE foods with the virulent bacteriophage FO1-E2. Int. J. Food Microbiol. Mar. 1; 154(1-2):66-72.
  • [17] Guenther S., Loessner M.J.: 2011. Bacteriophage biocontrol of Listeria monocytogenes on soft ripened white mold and red-smear cheeses. Bacteriophage. Mar.; 1(2):94-100.
  • [18] Guenther S., Huwyler D., Richard S., Loessner M.J.: 2009. Virulent bacteriophage for efficient biocontrol of Listeria monocytogenes in ready-to-eat foods. Appl. Environ. Microbiol. Jan.; 75(1):93-100.
  • [19] Han J.E., Kim J.H., Hwang S.Y., Choresca C.H. Jr, Shin S.P., Jun J.W., Chai J.Y., Park Y.H., Park S.C.: 2013. Isolation and characterization of a Myoviridae bacteriophage against Staphylococcus aureus isolated from dairy cows with mastitis. Res. Vet. Sci. Oct.; 95(2):758-63.
  • [20] Hudson J.A., Billington C., Cornelius A.J., Wilson T., On S.L., Premaratne A., King N.J.: 2013. Use of a bacteriophage to inactivate Escherichia coli O157:H7 on beef. Food Microbiol. Oct.; 36(1):14-21.
  • [21] Johnson R.P., Gyles C.L., Huff W.E., Ojha S., Huff G.R. , Rath N.C., Donoghue A.M.: 2008. Bacteriophages for prophylaxis and therapy in cattle, poultry and pigs. Anim Health Res. Rev. Dec.; 9(2):201-15.
  • [22] Kang H.W., Kim J.W., Jung T.S., Woo G.J.: 2013. wksl3, a New biocontrol agent for Salmonella enterica serovars enteritidis and typhimurium in foods: characterization, application, sequence analysis, and oral acute toxicity study. Appl. Environ. Microbiol. Mar.; 79(6):1956-68.
  • [23] Kim K.P., Klumpp J., Loessner M.J.: 2007: Enterobacter sakazakii bacteriophages can prevent bacterial growth in reconstituted infant formula. Int. J. Food Microbiol. Apr.; 10;115(2):195-203.
  • [24] Leverentz B., Conway W.S., Camp M.J., Janisiewicz W.J., Abuladze T., Yang M., Saftner R., Sulakvelidze A.: 2003. Biocontrol of Listeria monocytogenes on fresh-cut produce by treatment with lytic bacteriophages and a bacteriocin. Appl. Environ. Microbiol. Aug.; 69(8):4519-26.
  • [25] Loc Carrillo C., Atterbury R.J., el-Shibiny A., Connerton P.L., Dillon E., Scott A., Connerton I.F.: 2005. Bacteriophage therapy to reduce Campylobacter jejuni colonization of broiler chickens. Appl. Environ. Microbiol. Nov.; 71(11):6554-63.
  • [26] Maura D., Debarbieux L.: 2011. Bacteriophages as twenty-first century antibacterial tools for food and medicine. Appl. Microbiol. Biotechnol. May; 90(3):851-9.
  • [27] Modi R., Hirvi Y., Hill A., Griffiths M.W.: 2001. Effect of phage on survival of Salmonella enteritidis during manufacture and storage of cheddar cheese made from raw and pasteurized milk. J. Food. Prot. Jul.; 64(7):927-33.
  • [28] O'Flynn G., Ross R.P., Fitzgerald G.F., Coffey A.: 2004. Evaluation of a cocktail of three bacteriophages for biocontrol of Escherichia coli O157:H7. Appl. Environ. Microbiol. Jun.; 70(6):3417-24.
  • [29] Patel J., Sharma M., Millner P., Calaway T., Singh M.: 2011. Inactivation of Escherichia coli O157:H7 attached to spinach harvester blade using bacteriophage. Foodborne Pathog. Dis. Apr.; 8(4):541-6.
  • [30] Raya R.R., Oot R.A., Moore-Maley B., Wieland S., Callaway T.R., Kutter E.M., Brabban A.D.: 2011. Naturally resident and exogenously applied T4-like and T5-like bacteriophages can reduce Escherichia coli O157:H7 levels in sheep guts. Bacteriophage. Jan.; 1(1):15-24.
  • [31] Raya R.R., Varey P., Oot R.A., Dyen M.R., Callaway T.R., Edrington T.S., Kutter E.M., Brabban A.D.: 2006. Isolation and characterization of a new T-even bacteriophage, CEV1, and determination of its potential to reduce Escherichia coli O157:H7 levels in sheep. Appl. Environ. Microbiol. Sep.; 72(9):6405-10.
  • [32] Rozema E.A., Stephens T.P., Bach S.J., Okine E.K., Johnson R.P., Stanford K., McAllister T.A.: 2009. Oral and rectal administration of bacteriophages for control of Escherichia coli O157:H7 in feedlot cattle. J. Food Prot. Feb.; 72(2):241-50.
  • [33] Saez A.C., Zhang J., Rostagno M.H., Ebner P.D.: 2011. Direct feeding of microencapsulated bacteriophages to reduce Salmonella colonization in pigs. Foodborne Pathog. Dis. Dec.; 8(12):1269-74.
  • [34] Sharma M., Patel J.R., Conway W.S., Ferguson S., Sulakvelidze A.: 2009. Effectiveness of bacteriophages in reducing Escherichia coli O157:H7 on fresh-cut cantaloupes and lettuce. J. Food Prot. Jul.; 72(7):1481-5.
  • [35] Sheng H., Knecht H.J., Kudva I.T., Hovde C.J.: 2006. Application of bacteriophages to control intestinal Escherichia coli O157:H7 levels in ruminants. Appl. Environ Microbiol. Aug.; 72(8):5359-66.
  • [36] Sobiczewski P.: 2003: Chemiczna i biologiczna ochrona roślin przed chorobami bakteryjnymi. Owoce, Warzywa, Kwiaty 6, 31-34
  • [37] Soni K.A., Desai M., Oladunjoye A., Skrobot F., Nannapaneni R.: 2012. Reduction of Listeria monocytogenes in queso fresco cheese by a combination of listericidal and listeriostatic GRAS antimicrobials. Int. J. Food Microbiol. Apr. 2; 155(1-2):82-8.
  • [38] Soni K.A., Nannapaneni R.: 2010. Bacteriophage significantly reduces Listeria monocytogenes on raw salmon fillet tissue. J. Food Prot. Jan.;73(1):32-8.
  • [39] Soni K.A., Nannapaneni R., Hagens S.: 2010. Reduction of Listeria monocytogenes on the surface of fresh channel catfish fillets by bacteriophage Listex P100. Foodborne Pathog. Dis. Apr.; 7(4):427-34.
  • [40] Spricigo D.A., Bardina C., Cortés P., Llagostera M.: 2013. Use of a bacteriophage cocktail to control Salmonella in food and the food industry. Int. J. Food Microbiol. Jul.; 15;165(2):169-74.
  • [41] Tomat D., Mercanti D., Balagué C., Quiberoni A.: 2013. Phage biocontrol of enteropathogenic and Shiga toxin-producing Escherichia coli during milk fermentation. Lett. Appl. Microbiol. Jul.; 57(1):3-10.
  • [42] Tomat D., Migliore L., Aquili V., Quiberoni A., Balagué C.: 2013. Phage biocontrol of enteropathogenic and shiga toxin-producing Escherichia coli in meat products. Front Cell. Infect. Microbiol. Jun.; 6;3:20.
  • [43] Viazis S., Akhtar M., Feirtag J., Diez-Gonzalez F.: 2011. Reduction of Escherichia coli O157:H7 viability on hard surfaces by treatment with a bacteriophage mixture. Int. J. Food Microbiol. Jan.; 31;145(1):37-42.
  • [44] Wagenaar J.A., Van Bergen M.A., Mueller M.A., Wassenaar T.M., Carlton R.M.: 2005. Phage therapy reduces Campylobacter jejuni colonization in broilers. Vet. Microbiol. Aug.; 30;109(3-4):275-83.
  • [45] Wall S.K., Zhang J., Rostagno M.H., Ebner P.D.: 2010. Phage therapy to reduce preprocessing Salmonella infections in market-weight swine. Appl. Environ. Microbiol. Jan.; 76(1):48-53.
  • [46] Whichard J.M., Sriranganathan N., Pierson F.W.: 2003. Suppression of Salmonella growth by wild-type and large-plaque variants of bacteriophage Felix O1 in liquid culture and on chicken frankfurters. J. Food Prot. Feb.; 66(2):220-5.
  • [47] Zhang H., Wang R., Bao H.: 2013. Phage inactivation of foodborne Shigella on ready-to-eat spiced chicken. Poult. Sci. Jan.; 92(1):211-7.
  • [48] Montanez-Izquierdo V.Y., Salas-Vazquez D., Rodrıguez-Jerez J.J.: 2012. Use ofepifluorescence microscopy to assess the effectiveness of phage P100 in controlling Listeria monocytogenes biofilms on stainless steel surfaces. Food Control.; 23:470-477.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.