Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-e7146aaa-ece0-4ee3-a7da-1d2b616cf499

Czasopismo

Archives of Civil and Mechanical Engineering

Tytuł artykułu

Thermoplastic fibre metal laminates: Stiffness properties and forming behaviour by means of deep drawing

Autorzy Wollmann, T.  Hahn, M.  Wiedemann, S.  Zeiser, A.  Jaschinski, J.  Modler, N.  Ben Khalifa, N.  Meißen, F.  Paul, C. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
Abstrakty
EN Hybrid materials provide a high potential for lighter structures and an improved crash performance. The investigated hybrid sandwich laminate consists of steel cover sheets and a carbon fibre-reinforced thermoplastic core. The first part of this investigation is focusing on an analytical prediction as well as on a comparison of numerical and experimental results for the evaluation of the laminate properties to get a general understanding for the material. Within the second part the forming behaviour of this material is investigated experimentally, analytically and numerically by means of cup deep drawing. These results indicate that cup deep drawing of thermoplastic fibre metal laminates is possible but limited. The limits in terms of achievable drawing depths are found to be defined by cracking and wrinkling of the cover sheets as well as fibre failure in the composite material.
Słowa kluczowe
PL komponenty hybrydowe   wielomateriały   laminat  
EN lightweight engineering   sandwich materials   hybrid components   fibre metal laminates   forming of multi-materials  
Wydawca Elsevier
Czasopismo Archives of Civil and Mechanical Engineering
Rocznik 2018
Tom Vol. 18, no. 2
Strony 442--450
Opis fizyczny Bibliogr. 22 poz., rys., wykr.
Twórcy
autor Wollmann, T.
  • Technische Universität Dresden, Institute of Lightweight Engineering and Polymer Technology (ILK), Holbeinstr. 3, 01307 Dresden, Germany, tino.wollmann@tu-dresden.de
autor Hahn, M.
  • TU Dortmund University, Institute of Forming Technology and Lightweight Components (IUL), Baroper Str. 303, 44227 Dortmund, Germany
autor Wiedemann, S.
  • Innovationsgesellschaft für fortgeschrittene Produktionssysteme in der Fahrzeugindustrie mbH, Steinplatz 2, 10623 Berlin, Germany
autor Zeiser, A.
  • Innovationsgesellschaft für fortgeschrittene Produktionssysteme in der Fahrzeugindustrie mbH, Steinplatz 2, 10623 Berlin, Germany
autor Jaschinski, J.
  • Technische Universität Dresden, Institute of Lightweight Engineering and Polymer Technology (ILK), Holbeinstr. 3, 01307 Dresden, Germany
autor Modler, N.
  • Technische Universität Dresden, Institute of Lightweight Engineering and Polymer Technology (ILK), Holbeinstr. 3, 01307 Dresden, Germany
autor Ben Khalifa, N.
  • TU Dortmund University, Institute of Forming Technology and Lightweight Components (IUL), Baroper Str. 303, 44227 Dortmund, Germany
autor Meißen, F.
  • Innovationsgesellschaft für fortgeschrittene Produktionssysteme in der Fahrzeugindustrie mbH, Steinplatz 2, 10623 Berlin, Germany
autor Paul, C.
  • thyssenkrupp AG, TechCenter Carbon Composites, Frankenring 1, 01723 Kesselsdorf, Germany
Bibliografia
[1] L. Eckstein, B. Hartmann, F. Schmitt, Leichtbau bei Elektrofahrzeugen, ATZ – Automobiltechnische Zeitschrift 112 (11) (2010) 788–795.
[2] W. Hufenbach, F. Adam, M. Krahl, S. Geller, Ganzheitliche Lösungsstrategien bei der Entwicklung von Faserverbundkomponenten für automobile Leichtbauanwendungen, in: Proc. 2nd International Conference on Advanced Metal Forming Processes in Automotive Industry AutoMetForm Conf, 2010.
[3] W. Hufenbach, J. Werner, J. Kiele, Elektromobilität in Ultraleichtbauweise, ATZextra 18 (2) (2013) 42–46.
[4] T. Sinmazçelik, E. Avcu, M.Ö. Bora, O. Çoban, A review: fibre metal laminates, background, bonding types and applied test methods, Mater. Des. 32 (7) (2011) 3671–3685.
[5] A. Asundi, A.Y.N. Choi, Fiber metal laminates: an advanced material for future aircraft, J. Mater. Process. Technol. 63 (1) (1997) 384–394.
[6] L.B. Vogelesang, A. Vlot, Development of fibre metal laminates for advanced aerospace structures, J. Mater. Process. Technol. 103 (2000) 1–5.
[7] G.V. Reyes, W.J. Cantwell, The mechanical properties of fibre– metal laminates based on glass fibre reinforced polypropylene, Compos. Sci. Technol. 60 (7) (2000) 1085–1094.
[8] C. Gerstenberger, T. Osiecki, L. Kroll, P. Scholz, H. Seidlitz, Processing and characterization of cathodic dip coated metal/ composite-laminates, Arch. Civil Mech. Eng. 16 (3) (2016) 467–472.
[9] L. Mosse, P. Compston, W.J. Cantwell, M. Cardew-Hall, S. Kalyanasundaram, The effect of process temperature on the formability of polypropylene based fibre–metal laminates, Compos. Part A: Appl. Sci. Manuf. 36 (8) (2005) 1158–1166.
[10] L. Mosse, P. Compston, W.J. Cantwell, M. Cardew-Hall, S. Kalyanasundaram, Stamp forming of polypropylene based fibre–metal laminates: the effect of process variables on formability, J. Mater. Process. Technol. 172 (2) (2006) 163–168.
[11] L. Mosse, P. Compston, W.J. Cantwell, M. Cardew-Hall, S. Kalyanasundaram, The development of a finite element model for simulating the stamp forming of fibre–metal laminates, Compos. Struct. 75 (1–4) (2006) 298–304.
[12] R.H.W. ten Thije, R. Akkerman, L. van der Meer, M.P. Ubbink, Tool-ply friction in thermoplastic composite forming, Int. J. Mater. Form. 1 (1) (2008) 953–956.
[13] S. DharMalingam, P. Compston, S. Kalyanasundaram, Process variables optimisation of Polypropylene based fibre–metal laminates forming using finite element analysis, Key Eng. Mater. 410 (2009) 263–269.
[14] F. Abbassi, I. Elfaleh, S. Mistou, A. Zghal, M. Fazzini, T. Djilali, Experimental and numerical investigations of a thermoplastic composite (carbon/PPS) thermoforming, Struct. Control Health Monit. 18 (7) (2011) 769–780.
[15] L. Dong, C. Lekakou, M.G. Bader, Processing of composites: simulations of the draping of fabrics with updated material behaviour law, J. Compos. Mater. 35 (2) (2001) 138–163.
[16] B.A. Behrens, M. Vucetic, A. Neumann, T. Osiecki, N. Grbic, Experimental test and FEA of a sheet metal forming process of composite material and steel foil in sandwich design using LS-DYNA, Key Eng. Mater. 651–653 (2015) 439–445.
[17] T. Wollmann, C. Krbetschek, B. Poggel, O. Vogt, C. Paul, J. Jaschinski, R. Kawalla, N. Modler, Manufacturing of high performance carbon fibre-reinforced metal sandwich materials and their forming behaviour, in: ECCM 2016 – Proceeding of the 17th European Conference on Composite Materials, 2016.
[18] W. Hufenbach, J. Jaschinski, T. Weber, D. Weck, Numerical and experimental investigations on HYLITE sandwich sheets as an alternative sheet metal, Arch. Civil Mech. Eng. 8 (2) (2008) 67–80.
[19] A.E. Tekkaya, M. Hahn, L. Hiegemann, C. Weddeling, N. Ben Khalifa:, Umformen faserverstärkter thermoplastische Kunststoff-Halbzeuge mit metallischen Deckblechen für den Leichtbau, in: Tagungsband 35, EFB-Kolloquiums Blechverarbeitung, 2015 Bad Bode, 24./25.03.2015.
[20] J. Chakrabarty, Applied Plasticity, Mechanical Engineering Series, 2nd Ed., Springer Science + Business Media, 2010.
[21] P.J. Hine, R.A. Duckett, A.S. Kaddour, M.J. Hinton, G.M. Wells, The effect of hydrostatic pressure on the mechanical properties of glass fibre/epoxy unidirectional composites, Compos. Part A – Appl. Sci. Manuf. 36 (2) (2005) 279–289.
[22] U. Sachs, R. Akkerman, K. Fetfatsidis, E. Vidal-Sallé, J. Schumacher, G. Ziegmann, S. Allaoui, G. Hivet, B. Maron, K. Vanclooster, S.V. Lomov, Characterization of the dynamic friction of woven fabrics: experimental methods and benchmark results, Compos. Part A: Appl. Sci. Manuf. 67 (2014) 289–298.
Uwagi
PL Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-e7146aaa-ece0-4ee3-a7da-1d2b616cf499
Identyfikatory
DOI 10.1016/j.acme.2017.09.001