Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-e5de9739-ef11-4a9a-9b7f-a839a891ebf3

Czasopismo

Ecological Chemistry and Engineering. A

Tytuł artykułu

Spatial Differentiation of Total Nitrogen Content and the Activity of n-transforming Enzymes in a Soil

Autorzy Piotrowska-Długosz, A.  Rybacki, M.  Długosz, J.  Kobierski, M.  Wilczewski, E. 
Treść / Zawartość
Warianty tytułu
PL Zróżnicowanie przestrzenne zawartości azotu ogółem oraz aktywności enzymów przemian azotu w glebie
Języki publikacji EN
Abstrakty
EN The objective of this study was to evaluate and compare the spatial differentiation of total N (NTOT) content and urease (UR), nitrate reductase (NR) and arginine deaminase (ADA) activities in the surface horizon of Luvisol and Phaeozem of the Pomerania and Cuiavia region. 50 soil samples from both study areas were collected in April 2007 in a square sampling grid (90 × 40 m). The results were evaluated with the use of geostatistical methods. Spatial variability of the investigated parameters was evaluated by using empirical semivariograms with adjusted theoretical mathematical model of variograms. Raster maps of the studied properties were drawn. The concentration of chemical properties (TN, TOC, pHKCl) and the activity of UR and ADA was significantly higher in Phaeozem compared to Luvisol. Only the nitrate reductase activity was similar in samples of both types of soils. To characterise the spatial variability of the properties studied, spherical or mixed (spherical/linear) models with or without the nugget effect (only NR activity in Luvisol), were fitted to the calculated semivariograms. Total N content, NR activity in Phaeozem and ADA activity in Luvisol were in the strong variability class (the nugget effect < 25 %), while UR activity in both soil types and ADA activity in Phaeozem were situated in the moderate variability class (the nugget effect between 25 and 75 %). The ranges of influence calculated for properties studied ranged from 9.0 to 17 m. The raster maps showed that the distribution of each variable had a different pattern on the area studied. A specific variable was distributed in both topsoils in a different way.
PL Celem badań było określenie zmienności przestrzennej zawartości N-ogółem (TN) oraz aktywności ureazy (UR), nitroreduktazy (NR) i poziomu deaminacji argininy (ADA) w poziomie powierzchniowym gleby płowej oraz czarnej ziemi regionu Pomorza i Kujaw. W kwietniu 2007 r. z obu obszarów pobrano po 50 próbek glebowych z punktów zlokalizowanych w sztywnej siatce kwadratów (90 × 40 m). Wyniki zmienności przestrzennej badanych parametrów określono za pomocą empirycznych variogramów oraz map rastrowych. Zawartość parametrów chemicznych (TN, TOC, pHKCl) oraz aktywność UR i ADA były większe w czarnej ziemi w porównaniu do gleby płowej. Jedynie aktywność nitroreduktazy była zbliżona w obu typach badanych gleb. Zmienność przestrzenną badanych parametrów przedstawiono za pomocą sferycznych lub mieszanych (sferyczno-liniowych) modeli semivariogamów. Zawartość N ogółem, aktywność NR w czarnej ziemi oraz ADA w glebie płowej znajdowały się w niskiej klasie zmienności (wariancja samorodka < 25 %) natomiast aktywność UR w obu typach gleb oraz ADA w czarnej ziemi zaliczono do średniej klasy zmienności. Zakresy autokorelacji badanych zmiennych wynosiły od 9 do 17 m. Mapy przestrzennego rozmieszczenia wyników badanych zmiennych wykazały, że rozmieszczenie wartości każdej z nich wykazywało inny kierunek. Ponadto wartości danej cechy były odmiennie rozmieszczone w obu typach gleb.
Słowa kluczowe
PL gleba płowa   czarna ziemia   zmienność przestrzenna   N-ogółem   ureaza   nitroreduktaza   poziom deaminacji argininy  
EN Luvisol   Phaeozem   spatial variability   total N   urease   nitrate reductase   arginine deaminase   activity  
Wydawca Towarzystwo Chemii i Inżynierii Ekologicznej
Czasopismo Ecological Chemistry and Engineering. A
Rocznik 2013
Tom Vol. 20, nr 6
Strony 663--674
Opis fizyczny Bibliogr. 35 poz., tab., wykr., rys.
Twórcy
autor Piotrowska-Długosz, A.
  • Division of Biochemistry, Faculty of Agriculture and Biotechnology, University of Technology and Life Sciences, ul. Bernardyńska 6, 85–029 Bydgoszcz, Poland, apiotr@utp.edu.pl
autor Rybacki, M.
  • Division of Biochemistry, Faculty of Agriculture and Biotechnology, University of Technology and Life Sciences, ul. Bernardyńska 6, 85–029 Bydgoszcz, Poland
autor Długosz, J.
  • Department of Soil Science and Soil Protection, Faculty of Agriculture and Biotechnology, University of Technology and Life Sciences, Bernardyńska 6, 85–029 Bydgoszcz, Poland.
autor Kobierski, M.
  • Department of Soil Science and Soil Protection, Faculty of Agriculture and Biotechnology, University of Technology and Life Sciences, Bernardyńska 6, 85–029 Bydgoszcz, Poland.
autor Wilczewski, E.
  • Department of Agrotechnology, Faculty of Agriculture and Biotechnology, University of Technology and Life Sciences, ul. Kordeckiego 20, 85–225 Bydgoszcz, Poland.
Bibliografia
[1] McNeill A, Unkovich M. The nitrogen cycle in terrestrial ecosystems. In: Marchner P, Rengel Z, editors. Nutrient cycling in terrestrial ecosystems. Berlin, Heidelberg: Springer-Verlag; 2007;37-64.
[2] Wyczółkowski AI, Dąbek-Szreniawska M. Enzymes participating in organic nitrogen mineralization. In: Russel S, Wyczółkowski AI, editors. Methods of the determination of enzymes activity in soil. Acta Agrophys. 2005;120(3):37-61.
[3] Hopkins DW, Dungait JAL. Soil microbiology and sustainable crop production. In: Dixon GR, Tilston EL, editors. Soil microbiology and nutrient cycling. Dordrecht, Heidelberg: Springer-Verlag; 2010;59-80.
[4] Nannipieri P, Kandeler E, Ruggiero P. Enzyme activities and microbiological and biochemical processes in soil. In: Burns RG, Dick RP, editors. Enzymes in the environment. Activity, ecology and application. Madison Avenue: Marcel Dekker; 2002;1-34.
[5] Geisseler D, Horwath WR, Joergensen RG, Ludwig B. Pathways of nitrogen utilization by soil microorganisms – A review. Soil Biol Biochem. 2010;42:2058-2067. DOI: 10.1016/j.soilbio.2010.08.021.
[6] Abdelmagid HM, Tabatabai MA. Nitrate reductase activity of soils. Soil Biol Biochem. 1987;19:421-427.
[7] McCarty GW, Bremner JM. Regulation of assimilatory nitrate reductase activity in soil by microbial assimilation of ammonium. Agric Sci. 1992;89:5834-5836.
[8] Kaszubiak H, Durska G. Arginine ammonification rate compared with bacteria biomass concentration. Pol J Soil Sci.1992;25:165-170.
[9] Tate III RL. Microbiology and enzymology of carbon and nitrogen cycling. In: In: Burns RG, Dick RP, editors. Enzymes in the environment. Activity, ecology and application. Madison Avenue: Marcel Dekker; 2002;227-248.
[10] Rutigliano FA, Castaldi S, D’Ascoli R, Carfora A, Marzaioli R, Fioretto A. Soil activities related to nitrogen cycle under three plant cover types in Mediterranean environment. Appl Soi Ecol. 2009;43:40-46. DOI.10.1016/j.apsoil.2009.05.010.
[11] Khalil MI, Guster R, Schmidhalter U. Effects of urease and nitrification inhibitors added to urea on nitrous oxide emissions from a loess soil J Plant Nutr Soil Sci. 2009;172:651-660. DOI: 10.1002/jpln.200800197.
[12] Singh DK, Kumar S. Nitrate reductase, arginine deaminase, urease and dehydrogenase activities in natural soil (ridges with forest) and in cotton soil after acetamiprid treatments. Chemosphere. 2008;71:412-418. DOI:10.1016/j.chemosphere.2007.11.005.
[13] Szajdak L, Gaca W. Nitrate reductase activity in soil under shelterbelt and an adjoining cultivated field. Chem Ecol. 2010;26:23-134.
[14] Aşkin T, Kizilkaya R. The spatial variability of urease activity of surface agricultural soils within an urban area. J Central Eur Agric. 2005;6:161-166.
[15] Piotrowska A. Spatial Variability of Total and Mineral Nitrogen Content and Activities of the N-Cycle Enzymes in a Luvisol Topsoil. Pol J Environ Stud. 2011;20(6):1565-1573.
[16] IUSS Working Group WRB World Reference Base for Soil Resources 2006. World Soil Resources Reports No. 103. FAO. Rome; 2007.
[17] Kandeler E. Enzymes Involved in Nitrogen Metabolism, In: Scinner F, Öhlinger R, Kandeler E, Mrgesin R, editors. Methods in Soil Biology. Berlin Heidelberg: Springer-Verlag; 1995:163-184.
[18] Alef K, Kleiner D. Arginine ammonification, a simple method to estimate microbial activity potentials in soils. Soil Biol Biochem. 1986;18:233-235.
[19] Kandeler E, Gerber H. Short-term assay of soil urease activity using colorimetric determination of ammonium. Biol Fertil Soil. 1988;6:68-72.
[20] Mulla DJ, McBratney AB. Soil Saptial Variability, In: Malcolm E, Sumner J, editors. Handbook of Soil Science, Boca Raton: CRC Press; 2000:A321-A352.
[21] Cambardella CA, Moorman TB, Novak JM, Parkin TB, Karlen DL, Turco RF, et al. Field-scale variability of soil properties in central Iowa soils. Soil Sci Soc Amer J. 1994;58:1501-1511.
[22] Chai X, Schen Ch, Yuan X, Huang Y. Spatial prediction of soil organic matter in the presence of different external trends with REML-EBLUP. Geoderma. 2008;148:159-166. DOI.org/10.1016/j/geoderma.2008.09.018.
[23] Bishop TFA, Lark RM. The geostatistical analysis of experiments at the landscape-scale. Geoderma. 2006;133:87-106. DOI.org/10.1016/j.geoderma.2006.03.039.
[24] Davis JC. Statistics and data analysis in geology. New York: Wiley and Sons; 1986.
[25] Peigné J, Vian JF, Cannavacciuolo M, Bottollier B, Chaussod R. Soil sampling based on field spatial variability of soil microbial indicators. Eur J Soil Biol. 2009;45:488-495. DOI.org/10.1016/j.ejsobi.2009.09.002.
[26] Lu P, Su Y, Niu Z, Wu JJ. Geostatistical Analysis and Risk Assessment on Soil Total Nitrogen and Total Soil Phosphorus in the Dongting Lake Plain Area, China. Environ Qual. 2007;36:935-942. DOI: 10.2134/jeq2006.0184.
[27] Yanai J, Sawamoto T, Oe T, Kusa K, Yamarkawa K, Sakamoto K, et al. Spatial Variability of Nitrous Oxide Emissions and Their Soil-Related Determining Factors in an Agricultural Field. Environ Qual. 2003;32:1965-1977. DOI: 10.2134/jeq2003.1965.
[28] Bergstrom DW, Monreal CM, Millette JA, King DJ. Spatial dependence of soil enzyme activities along a slope. Soil Sci Soc Amer J. 1998;6:1302-1308.
[29] Goovaerts P. Geostatistical tools for characterizing the spatial variability of microbiological and physico-chemical soil properties Biol Fertil Soil. 1998;27:315-334.
[30] Aşkin T, Kizilkaya R. Assessing spatial variability of soil enzyme activities in pasture topsoil suing geostatistics. Eur J Soil Biol. 2006;42:230-237. DOI.org/10.1016/j.ejsobi.2006.02.002.
[31] Stenger R, Priesack E, Beese F. Spatial variation of nitrate-N and related soil properties at the plot scale. Geoderma. 2002;105:259-275. DOI.org/10.1016/S0016-7061(01)00107-0.
[32] Gianfreda L, Ruggiero P. Enzyme activities in soil. In: Nannipieri P, Smalla K, editors. Nucleic Acids and Proteins in Soil. Berlin, Heidelberg: Springer-Verlag; 2006:20-25.
[33] Okur N, Altindişli A, Çengel M, Göçmez S, Kayikçiođlu HH. Microbial biomass and enzyme activity in vineyard soils under organic and conventional farming systems Turk. J Agric For. 2009;33:413-423.
[34] Mc Gill WB, Cole CV. Comparative aspects of cycling of organic C, N, S and P through soil organic matter. Geoderma. 1981;26:267-286.
[35] Balota EL, Kanashiro M, Filho AC, Andrade DS, Dick. RP. Soil enzyme activities under long-term tillage and crop rotation systems in subtropical agroecosystems, Braz J Microbiol. 2004;35:300-306.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-e5de9739-ef11-4a9a-9b7f-a839a891ebf3
Identyfikatory