Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-e5c41de5-6ec6-4a3c-b273-1ab02c140357

Czasopismo

Archives of Metallurgy and Materials

Tytuł artykułu

Microstructural Features and Mechanical Properties after Applying Rolling with Cyclic Movement of Rolls of an Al-Li Alloys

Autorzy Brzezińska, A.  Urbańczyk-Gucwa, A.  Molak, R.  Rodak, K. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
Abstrakty
EN Two strength-age hardening aluminum-lithium alloys: Al-2.3wt%Li and Al-2.2wt%Li-0.1wt%Zr in two different heat treatment conditions: solution state (S) and additionally in aging state (A) were severely plastically deformed by rolling with cyclic movement of rolls (RCMR) method to produce ultrafine - grained structure. Two thermo-mechanical treatments were used: (S+A+RCMR) and (S+RCMR+A+RCMR). To investigate the combined effect of plastic deformation and heat treatment, tensile tests were performed. Microstructural observations were undertaken using scanning transmission electron microscopy (STEM), and scanning transmission electron microscopy (SEM) equipped with electron backscattering diffraction detector (EBSD). Based on the obtained results, it can be deduced that maximum mechanical properties as: yield strength (YS) and ultimate tensile strength (UTS) couldbe achieved when the microstructure of alloys is in (S+A+RCMR) state. For samples in (S+RCMR+A+RCMR) state, ductility is higher than for (S+A+RCMR) state. The microstructural results shows that the favourable conditions for decreasing grain size of alloys is (S+A+RCMR) state. Additionally, in this state is much greater dislocation density than for (S+RCMR+A+RCMR) state. The microstructure of alloys in (S+RCMR+A+RCMR) state is characterized by grains/subgrains with higher average diameter and with higher misorientation angles compared with (S+A+RCMR) state.
Słowa kluczowe
EN Al-Li alloy   severe plastic deformation   ultrafine-grains   STEM   SEM/EBSD  
Wydawca Polish Academy of Sciences, Committee of Metallurgy, Institute of Metallurgy and Materials Science
Czasopismo Archives of Metallurgy and Materials
Rocznik 2019
Tom Vol. 64, iss. 4
Strony 1533--1540
Opis fizyczny Bibliogr. 36 poz., fot., rys., tab., wzory
Twórcy
autor Brzezińska, A.
  • Silesian University of Technology, Faculty of Materials Engineering and Metallurgy, 8 Krasińskiego Str., 40-019 Katowice, Poland, agata.brzezinska@polsl.pl
autor Urbańczyk-Gucwa, A.
  • Silesian University of Technology, Faculty of Materials Engineering and Metallurgy, 8 Krasińskiego Str., 40-019 Katowice, Poland
autor Molak, R.
  • Warsaw University of Technology, Faculty of Materials Engineering, 141 Wołoska Str., 02-507 Warszawa, Poland
autor Rodak, K.
  • Silesian University of Technology, Faculty of Materials Engineering and Metallurgy, 8 Krasińskiego Str., 40-019 Katowice, Poland
Bibliografia
[1] N. V. Isaev, P. A. Zabrodin, V. Z. Spuskanyuk, A. A. Davydenko, V. V. Pustovalov, V. S. Fomenko, I. S. Braude, Low Temp. Phys. (2012). DOI: 10.1063/1.3678178
[2] S. Kobayashi, T. Yoshimura, S. Tsurekawa, T. Watanabe, J. Cui, Mater. Trans. 44, 1469-1479 (2003). DOI: 10.2320/mater-trans.44.1469
[3] K. Wawer, M. Lewandowska, K. J. Kurzydlowski, Arch. Metall. Mater. 57, 877-881 (2012). DOI: 10.2478/V10172-0I2-0097-1
[4] E. K. Cardoso, V. Guido, G. Silva, W. B. Filho, A. Jorge, Rev. Mater. (2010).
[5] M. Vaseghi, A. K. Taheri, H. S. Kim, in: IOP Conf. Ser. Mater. Sci. Eng., 2014. DOI: 10.1088/1757-899X/63/1/012089
[6] K. Rodak, J. Pawlicki, M. Tkocz, Solid State Phenom. 191, 37-44 (2012). DOI: 10.4028/www.scientific.net/SSP.191.37
[7] K. Rodak, K. Radwański, R. M. Molak, Solid State Phenom. (2011). DOI: 10.4028/www.scientific.net/SSP.176.21
[8] S. Fritsch, M. F. Wagner, Metals (Basel). 8, 63 (2018). DOI: 10.3390/met8010063
[9] N. Jiang, X. Gao, Z. Q. Zheng, Trans. Nonferrous Met. Soc. China (English Ed. (2010). DOI: 10.1016/S1003-6326(09)60207-7
[10] M. Tan, T. Sheppard, M. Tan, T. S. Extrusion, P. Of, A.N.A. Alloy, (1987).
[11] B. Adamczyk-Cieślak, J. Mizera, K. J. Kurzydłowski, Mater. Sci. Eng. A (2010). DOI: 10.1016/j.msea.2010.04.032
[12] G. J. Kulkarni, D. Banerjee, T. R. Ramachandran, Bull. Mater. Sci. (1989). DOI: 10.1007/BF02747140
[13] M. H. Shaeri, M. T. Salehi, S. H. Seyyedein, M. R. Abutalebi, J. K. Park, Mater. Des. (2014). DOI: 10.1016/j.matdes.2014.01.008
[14] P. J. Apps, M. Berta, P. B. Prangnell, Acta Mater. (2005). DOI: 10.1016/j.actamat.2004.09.042
[15] O. Novitović, Ž. Kamberović, A. Novitović, Metalurgija (2010).
[16] B. B. Straumal, B. Baretzky, A. A. Mazilkin, F. Phillipp, O. A. Kogtenkova, M. N. Volkov, R. Z. Valiev, Acta Mater. (2004). DOI: 10.1016/j.actamat.2004.06.006
[17] Y. B. Xu, W. L. Zhong, Y. J. Chen, L. T. Shen, Q. Liu, Y. L. Bai, M. A. Meyers, Mater. Sci. Eng. A (2001). DOI: 10.1016/S0921-5093(00)01412-X
[18] M. Furukawa, A. Utsunomiya, K. Matsubara, Z. Horita, T. G. Langdon, Acta Mater. (2001). DOI: 10.1016/S1359-6454(01)00262-2
[19] Z. Cyganek, K. Rodak, F. Grosman, Arch. Civ. Mech. Eng. 13, 7-13 (2013). DOI: 10.1016/J.ACME.2012.10.008
[20] Patent no. PL 203220 B1, b.d.
[21] K. Rodak, A. Urbańczyk-Gucwa, M. B. Jabłońska, Arch. Civ. Mech. Eng. 18, 500-507 (2018). DOI: 10.1016/j.acme.2017.07.001
[22] K. Rodak, A. Urbańczyk-Gucwa, M. Jabłońska, J. Pawlicki, J. Mizera, Arch. Civ. Mech. Eng. 18, (2018). DOI: 10.1016/j.acme.2017.06.007
[23] R. M. Molak, H. Araki, M. Watanabe, H. Katanoda, N. Ohno, S. Kuroda, in: J. Therm. Spray Technol., 2014. DOI: 10.1007/s11666-013-0024-7
[24] R. M. Molak, M. Kartal, Z. Pakiela, W. Manaj, M. Turski, S. Hiller, S. Gungor, L. Edwards, K. J. Kurzydlowski, Appl. Mech. Mater. (2007). DOI: 10.4028/www.scientific.net/AMM.7-8.187
[25] A. Medjahed, H. Moula, A. Zegaoui, M. Derradji, A. Henniche, R. Wu, L. Hou, J. Zhang, M. Zhang, Mater. Sci. Eng. A 732, 129-137 (2018). DOI: 10.1016/j.msea.2018.06.074
[26] H. Chen, T. Yu, Z. Qi, R. Wu, G. Wang, X. Lv, F. Cong, L. Hou, J. Zhang, M. Zhang, J. Mater. Eng. Perform. 27, 5709-5717 (2018). DOI: 10.1007/s11665-018-3678-y
[27] H. Huang, F. Jiang, J. Zhou, L. Wei, J. Qu, L. Liu, J. Mater. Eng. Perform. (2015). DOI: 10.1007/s11665-015-1748-y
[28] Y. Wang, Z. Li, T. Yu, A. Medjahed, R. Wu, L. Hou, J. Zhang, X. Li, M. Zhang, Adv. Eng. Mater. 20, 1700898 (2018). DOI: 10.1002/adem.201700898
[29] H. Jiang, S. Sandlöbes, G. Gottstein, S. Korte-Kerzel, J. Mater. Res. 32, 4398-4410 (2017). DOI: 10.1557/jmr.2017.350
[30] S. V. Dobatkin, J. Gubicza, D. V. Shangina, N. R. Bochvar, N. Y. Tabachkova, Mater. Lett. 153, 5-9 (2015). DOI: 10.1016/j.matlet.2015.03.144
[31] Y. M. Wang, E. Ma, Acta Mater. (2004). DOI: 10.1016/j.acta-mat.2003.12.022
[32] D. Sagapuram, K. Viswanathan, K. P. Trumble, S. Chandrasekar, Philos. Mag. 98, 3267-3299 (2018). DOI: 10.1080/14786435.2018.1524586
[33] A. Korbel, W. Bochniak, Scr. Mater. 51, 755-759 (2004). DOI: 10.1016/j.scriptamat.2004.06.020
[34] N. A. Sakharova, J. V. Fernandes, Mater. Chem. Phys. 98, 44-50 (2006). DOI: 10.1016/j.matchemphys.2006.01.038
[35] D. Hughes, Mater. Sci. Eng. A 319-321, 46-54 (2001). DOI: 10.1016/S0921-5093(01)01028-0
[36] T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, J. J. Jonas, Prog. Mater. Sci. 60, 130-207 (2014). DOI: 10.1016/j.pmatsci.2013.09.002
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-e5c41de5-6ec6-4a3c-b273-1ab02c140357
Identyfikatory
DOI 10.24425/amm.2019.130123