Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-e5493497-abad-48d5-8fa6-02d02c54b8fa

Czasopismo

Acta of Bioengineering and Biomechanics

Tytuł artykułu

The effects of strain amplitude and localization on viscoelastic mechanical behaviour of human abdominal fascia

Autorzy Kirilova-Doneva, M.  Pashkouleva, D.  Kavardzhikov, V. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
Abstrakty
EN Purpose: The purpose of the paper is to examine and compare the viscoelastic mechanical properties of human transversalis and umbilical fasciae according to chosen strain levels. Methods: A sequence of relaxation tests of finite deformation ranging from 4 to 6% strain with increment 0.3% was performed at strain rate 1.26 mm/s. Initial and equilibrium stresses T0, Teq, initial modulus E and equilibrium modulus Eeq, reduction of the stress during relaxation process ΔT, as well as the ratio (1 – Eeq /E) were calculated. Results: The range in which parameters change their values are (0.184–1.74 MPa) for initial stress, (0.098–0.95 MPa) for equilibrium stress, (43.5–4.6 MPa) for initial modulus E. For Eeq this interval is (23.75–2.45 MPa). There are no statistically significant differences between the values of these parameters according to localization. The differences in viscoelastic properties of both fasciae are demonstrated by reduction of the stress during relaxation process and ratio (1 – Eeq /E). The values of ΔT and (1 – Eeq /E) ratio for umbilical fascia are significantly greater than that of fascia transversalis. An increase of 2% in strain leads to change of the normalized relaxation ratio of fasciae between 28%–66%. There is a weak contribution of viscous elements in fascia transversalis samples during relaxation, while in umbilical fascia the contribution of viscous component increases with strain level to 0.66 at 5.3% strain. Conclusions: This study adds new data for the material properties of human abdominal fascia. The results demonstrate that in chosen range of strain there is an influence of localization on visco-elastic tissue properties.
Słowa kluczowe
PL właściwości lepkosprężyste   test   eksperyment   bioinżynieria  
EN human fascia   viscoelastic properties   experimental testing  
Wydawca Oficyna Wydawnicza Politechniki Wrocławskiej
Czasopismo Acta of Bioengineering and Biomechanics
Rocznik 2016
Tom Vol. 18, nr 4
Strony 127--133
Opis fizyczny Bibliogr. 20 poz., rys., tab., wykr.
Twórcy
autor Kirilova-Doneva, M.
  • Faculty of Pharmacy, Medical University-Sofia, Sofia, Bulgaria , M.Kirilova@imbm.bas.bg
  • Institute of Mechanics, Bulgarian Academy of Sciences, Sofia, Bulgaria
autor Pashkouleva, D.
  • Institute of Mechanics, Bulgarian Academy of Sciences, Sofia, Bulgaria
autor Kavardzhikov, V.
  • Institute of Mechanics, Bulgarian Academy of Sciences, Sofia, Bulgaria
Bibliografia
[1] BENCHETRIT S., DEBAERT M., DETRUIT B., DUFILHO A., GAUJOUX D., LAGOUTTE J., LEPERE M., RICO E., SORRENTINO J., THERIN M., Laparoscopic and open abdominal wall reconstruction using parietex meshes. Clinical results in 2700 hernias, Hernia, 1998, 2(2), 57–62.
[2] BONIFASI-LISTA C., LAKE S., SMALL M., WEISS J., Viscoelastic properties of the human medial collateral ligament under longitudinal, transverse and loading, J. Orthopaedic Research, 2005, 23(1), 67–76.
[3] BURDEA G., Force and Touch feedback for Virtual Reality, Wiley, New York, 1996.
[4] CALVO B., SIERRA M., GRASA J., MUNOZ M., PENA E., Determination of passive viscoelastic response of the abdominal muscle and related constitutive modelling: Stress relaxation behaviour, J. of the Mechanical Behaviour of Biomedical Materials, 2014, 36C, 47–58.
[5] COBB W., BURNS J., KERCHER K., MATTHEWS B., NORTON J., HENIFORD T., Normal intraabdominal pressure in healthy adults, J. of Surg. Res., 2005, 129(2), 231–235.
[6] DUNN M., SILVER F., Viscoelastic behaviour of human connective tissues: relative contribution of viscous and elastic components, Connective Tissue Research, 1983, 12(1), 59–67.
[7] FORSTEMANN T., TRZEWIK J., HOLSTE J., BATKE B., KONDERING M., WOLLOSCHECK T., HARTUNG C., Forces and deformations of the abdominal wall – A mechanical and geometrical approach to the linea alba, J. Biomech., 2011, 44(4), 600–606.
[8] FUNG Y., Biomechanics, its foundations and objectives, Prentice Hall, New Jersey, 1972.
[9] KINGSWORTH A., LEBLANC K., Hernias: inguinal and incisional, The Lancet, 2003, 362(9395), 1561–1571.
[10] KIRILOVA M., STOYTCHEV S., PASHKOULEVA D., KAVARDZHIKOV V., Experimental study of mechanical properties of human abdominal fascia, Med. Eng. and Phys., 2011, 33(1), 1–6.
[11] KIRILOVA M., STOYTCHEV S., PASHKOULEVA D., TSENOVA V., HRISTOSKOVA R., Visco-elastic mechanical properties of human abdominal fascia, Journal of Bodywork and Movement Therapies, 2009, 13(4), 336–337.
[12] KIRILOVA M., Time-dependant properties of human umbilical fascia, Connective Tissue Research, 2012, 53(1), 21–28.
[13] KONERDING M., BOHN M., WOLLOSCHECK T., BATKE B., HOLSTE J., WOHLERT S., TRZEWIK J., FORSTEMANN T., HARTUNG C., Maximum forces acting on the abdominal wall: Experimental validation of a theoretical modelling in a human cadaver study, Med. Eng. Phys., 2011, 33(6), 789–792.
[14] LANGELIER E., BUSCHMANN M., Increasing strain and strain rate strengthen transient stiffness but weaken the response to subsequent compression for articular cartilage in unconfined compression, J. Biomech, 2003, 36(6), 853–859.
[15] SCHLEIP R., DUERSELEN L., VLEEMING A., NAYLOR I., LEHMANN-HORN F., ZORN A., Strain hardening of fascia: Static stretching of dense fibrous connective tissues can induce a temporary stiffness increase accompanied by enhanced matrix hydration, Journal of Bodywork and Movement Therapies, 2012, 16(1), 94–100.
[16] SONG Ch., ALIJANI A., FRANK T., HANNA G., CUSCHIERI A., Elasticity of the living abdominal wall in laparoscopic surgery, J. Biomech., 2006, 39(3), 587–591.
[17] VAIUDE P., KURESHI A., BARKER S., NAZHAT S., MUDERA V., BROWN R., Mechanical properties of Transversalis Fascia and Hernia formation, Proceedings of the Tissue Engineering and Regenerative Medicine International Society, 2006, 204–204.
[18] VAN OS J.M., LANGE J., GOOSSENS R., KOSTER R., BURGER J., JEEKEL J., KLEINRENSINK G., Artificial midline-fascia of the human abdominal wall for testing suture strength, J. Mater. Med., 2006, 17(8), 759–765.
[19] WOLLOSCHECK T., GAUMANN A., TERZIC A., HEINTZ A., JUNGIGER T., KONERDING M., Inguinal hernia: Measurement of the biomechanics of the lower abdominal wall and the inguinal canal, Hernia, 2004, 8(3), 233–241.
[20] ZENG Y.J., SUN X.P., YANG J., WU W., XU X., YAN Y., Mechanical properties of nasal fascia and periosteum, Clinical Biomechanics, 2003, 18(8), 760–764.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-e5493497-abad-48d5-8fa6-02d02c54b8fa
Identyfikatory
DOI 10.5277/ABB-00358-2015-02