Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-e53e72e0-a208-4dea-bea6-2c9ced4fe01f

Czasopismo

Materials Science Poland

Tytuł artykułu

Surface microstructure, optical and electrical properties of spray pyrolyzed PbS and Zn-PbS thin films for optoelectronic applications

Autorzy Abiodun, E. A.  Emmanuel, A.  Bidini, A. T.  Enoch, D. O.  Omotoso, E.  Adeyemi, O.  Babatunde, O. G. 
Treść / Zawartość http://www.materialsscience.pwr.wroc.pl/
Warianty tytułu
Języki publikacji EN
Abstrakty
EN Lead sulphide (PbS) and zinc- doped lead sulphide (Zn–PbS) thin films were prepared by chemical spray pyrolysis on soda lime glass substrates at a temperature of 250 °C. Precursors were prepared from chemical reagents including zinc acetate, lead acetate and thiourea. The deposited films thicknesses and elemental composition were studied by Rutherford backscattering spectroscopy (RBS); the percentages of Pb and S were estimated as 40.58 % and 59.42 %, respectively, while for the Zn-doped sample, the percentages of Zn, Pb and S were respectively 4.84 %, 44.57 % and 50.59 %. Morphological studies revealed that the films were continuous and the particles were uniformly distributed across the substrate surface. AFM probe revealed nanostructured films with particles densely distributed across the substrates surfaces with incorporation of Zn2+. Statistical distribution of the grains over a specific projected area indicated average growth height of about 47 nm. Optical studies indicated that the transmission in visible light region of Zn-PbS thin film was superior to that of the undoped sample. Interband transition of both PbS and Zn-PbS films is directly allowed and their energy band gaps were found to be 0.43 eV and 1.45 eV, respectively. Electrical characterization showed that both films are of p-type conductivity with surface resistivity values of the order of 104Ω·cm.
Słowa kluczowe
EN pyrolysis   nanostructure   thiourea   optoelectronics   resistivity  
Wydawca Springer
Czasopismo Materials Science Poland
Rocznik 2017
Tom Vol. 35, No. 3
Strony 576--582
Opis fizyczny Bibliogr. 27 poz., rys., tab.
Twórcy
autor Abiodun, E. A.
  • College of Mathematical and Physical Sciences, Afe Babalola University, Ado Ekiti, Nigeria
  • Engineering Materials Development Institute, Akure, Nigeria
autor Emmanuel, A.
  • Center for Energy Research and Development Obafemi Awolowo University, Ile-Ife, Nigeria, eajenifuja@gmail.com
autor Bidini, A. T.
  • Department of Physics and Engineering Physics, Obafemi Awolowo University, Ile-Ife, Nigeria
autor Enoch, D. O.
  • College of Mathematical and Physical Sciences, Afe Babalola University, Ado Ekiti, Nigeria
autor Omotoso, E.
  • Department of Physics and Engineering Physics, Obafemi Awolowo University, Ile-Ife, Nigeria
autor Adeyemi, O.
  • Engineering Materials Development Institute, Akure, Nigeria
autor Babatunde, O. G.
  • Engineering Materials Development Institute, Akure, Nigeria
Bibliografia
[1] SZENDREI K., GOMULYA W., YAREMA M., HEISS W., LOI M.A., Appl. Phys. Lett., 97 (2010), 501.
[2] HERNÁNDEZ-BORJA J., VOROBIEV Y.V., RAMIREZBON R., Sol. Energ. Mat. Sol. C., 95 (2011), 1882.
[3] YOUSEFI R., MAHMOUDIAN M.R., SA’AEDI A., CHERAGHIZADE M., JAMALI-SHEINI F., AZARANG M., Ceram. Int., 42 (2016), 15209.
[4] AZIMI H.R., GHORANNEVISS M., ELAHI S.M., YOUSEF R., Ceram. Int., 43 (2017), 128.
[5] MADELUNG O., Semiconductor: Data Handbook, Springer, New York, 2004.
[6] OMOTOSO E., ADEGBOYEGA G.A., ELERUJA M.A., OLOFINJANA B., AKINWUNMI O.O., ILORI O.O., TALEATU B.A., AJAYI E.O.B., J. Non-Oxide Glass., 51 (2013), 9.
[7] RAFA M.A, ROUSDY N., J. Philos. Mag. Lett., 90 (2010), 113.
[8] BISWAL J.B., SAWANT N.V., GARJE S.S., Thin Solid Films, 518 (2010), 3164.
[9] UPADHYAYA H.M., CHANDRA S., J. Mater. Sci., 29 (1994), 2734.
[10] YAMAGUCHI T., YAMAMOTO Y., TANAKA T., DEMIZU Y., YOSHIDA A., Thin Solid Films, 281 (1996), 375.
[11] GANGOPADHYAY U., KIM K., DHUNGEL S.K., SAHA H., YI J., Adv. Optoelect., (2007), 5.
[12] SONAL S., CHAWLA A.K., GUPTA H.O., CHANDRA R., Thin Solid Film, 518 (2009), 1402.
[13] ADEOYE E.A., AJENIFUJA E., TALEATU B.A., FASASI A.Y., J. Mater., 8 (2015), 215210.
[14] TENY T.J., SUDHA K.C., VIJAYAKUMAR K.P., ABE T., KASHIWABA Y., Appl. Surf. Sci., 252 (2005), 1360.
[15] ALBIN D.S., RISHBUD S.H., Adv. Ceram. Mater. 2 (1987), 243.
[16] MOONEY J.B., RADDING S.B., Annu. Rev. Mater. Sci., 12 (1982), 81.
[17] CHEN C.H., KELDER E.M., SCHOONMAN J., J. Eur. Ceram. Soc., 18 (1998), 1434.
[18] DEANE K.S., RON J., Powder Diffraction File, International Center for Diffraction Data, Newtown Square, Pa, 2001.
[19] TALEATU B.A., ARBAB E.A.A., MOLA G.T., Appl. Phys. A, 120 (2015), 959.
[20] AJENIFUJA E., OSINKOLU G.A., FASASI A.Y., PELEMO D.A., OBIAJUNWA E.I., J. Mater. Sci.-Mater. El. 27 (2016), 335.
[21] BURSTEIN E., Phys. Rev., 93 (1954), 632.
[22] MOSS T.S., P. Phys. Soc. London, 367 (1954), 775.
[23] SEGHAIER S., KAMOUN N., BRINI R., AMARA A.B., Mater. Chem. Phys., 97 (2006), 71.
[24] PENTIA E., PINTILIE L., MATEI I., BOTILA T., OZBAY E., J. Optoelectron. Adv. M., 3 (2001), 525.
[25] PORTILLO MORENO O., CHALTEL LIMA L.A., CHÁVEZ PORTILLO M., ROSAS CASTILLA S., ZAMORA TOTOTZINTLE M., ABARCA ÁVILA G., GUTIÉRREZ PÉREZ R., ISRN Nanotech., 546027 (2012), 12.
[26] USHARANI K., BALU A.R., Acta Metall. Sin., 28 (2014), 64.
[27] HE X., DEMCHENKO I.N., STOLTE W.C., BUUREN A., LIANG H., J. Phys. Chem. C, 116 (2012), 22001.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-e53e72e0-a208-4dea-bea6-2c9ced4fe01f
Identyfikatory
DOI 10.1515/msp-2017-0074