Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Diffusive Fluxes of CH4 and CO2 at the Sediment-Overlying Water Interface in Reservoir Ecosystems

Treść / Zawartość
Warianty tytułu
Języki publikacji
The work detailed here concerned the CH4 and CO2 fluxes at the sediment-overlying water interface in Maziarnia and Nielisz Reservoirs, SE Poland. The research in question was conducted in the period of 2009-2011, the samples of sediment and overlying water were collected at two stations located in the upper and lower parts of each reservoir. The concentrations of CO2 and CH4 in pore water and overlying water were measured with the headspace method, using a Pye Unicam gas chromatograph (PU-4410/19) equipped with a methane analyzer allowing low CO2 concentrations to be detected. Diffusive fluxes of the analyzed gases at the sediment-overlying water interface were calculated on the basis of Fick’s first law, and were found to range from -0.01 to 3.48 mmol×m-2×d-1 for CH4 and from -1.27 to 47.02 mmol×m-2×d-1 for CO2. Comparable fluxes elsewhere typify the reservoirs experiencing far-reaching eutrophication. No dependent relationships were found between the values calculated for fluxes and either season of the year or sediment characteristics.
Słowa kluczowe
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
  • Department of Environmental and Chemistry Engineering, Faculty of Civil and Environmental Engineering and Architecture, Rzeszów University of Technology, Rzeszów, Poland,
  • 1. Abe D.S., Adams D.D., Sidagis Galli C.V., Sikar E., Tundisi J.G. 2005. Sediment greenhouse gases (methane and carbon dioxide) in the Lobo-Broa Reservoir, São Paulo state, Brazil: concentrations and diffuse emission fluxes for carbon budget considerations. Lakes & Reservoirs: Research and Management, 10, 201–209.
  • 2. Adams D.D. 2005. Diffuse flux of greenhouse gases – methane and carbon dioxide – at the sediment-water interface of some lakes and reservoirs of the world. In: Tremblay A., Varfalvy L., Roehm C., Garneau M. (Eds.) Greenhouse gas emissions – fluxes and processes. Hydroelectric reservoirs and natural environments.
  • 3. Adams D.D., Baudo R. 2001. Gases (CH4, CO2 and N2) and pore water chemistry in the surface sediments of Lake Orta, Italy: acidification effects on C and N gas cycling. J. Limnol., 60(1), 79–90.
  • 4. Bartoszek L., Koszelnik, P. 2016. The qualitative and quantitative analysis of the coupled C, N, P and Si retention in complex of water reservoirs. SpringerPlus, 5, 1157.
  • 5. Bartoszek L., Tomaszek J.A. 2011. Analysis of the spatial distribution of phosphorus fractions in the bottom sediments of the Solina-Myczkowce dam reservoir complex. Environment Protection Engineering, 37(3), 5–15.
  • 6. Bartoszek L., Tomaszek J.A. 2016. The influence of selected variables on the phosphorus content in bottom sediments of the Solina-Myczkowce complex of dam reservoirs. Fresenius Environmental Bulletin, 25(10), 3859–3866.
  • 7. Berner R.A. 1980. Early diagenesis: a theoretical approach. Princeton University Press, Princeton, N.Y.
  • 8. Casper P., Maberly S.C., Hall G.H., Finlay B.J. 2000. Fluxes of methane and carbon dioxide from a small productive lake to the atmosphere. Biogeochemistry, 49, 1–19.
  • 9. Casper P., Furtado A., Adams D.D. 2003. Biogeochemistry and diffuse fluxes of greenhouse gases (methane and carbon dioxide) and dinitrogen from the sediments in oligotrophic Lake Stechlin. In: Lake Stechlin: an approach to understand an oligotrophic lowland lake. Eds: Koschel R., Adams D.D. Arch Hydrobiol Spec Iss Adv Limnol, 58, 53–71.
  • 10. Gruca-Rokosz R. 2015. Dynamics of carbon greenhouse gases in reservoirs: production pathways, emissions to atmosphere (in Polish). Oficyna Wydawnicza Politechniki Rzeszowskiej, 1-132.
  • 11. Gruca-Rokosz R., Bartoszek L., Koszelnik P. 2017. The influence of environmental factors on the carbon dioxide flux across the water-air interface of reservoirs in south-eastern Poland. Journal of Environmental Sciences, 56, 290–299.
  • 12. Gruca-Rokosz R., Tomaszek J.A. 2015. Methane and carbon dioxide in the sediment of a eutrophic reservoir: production pathways and diffusion fluxes at the sediment-water interface. Water, Air and Soil Pollution, 226, 16, DOI: 10.1007/s11270–014–2268–3.
  • 13. Gruca-Rokosz R., Tomaszek J.A., Koszelnik P., Czerwieniec E. 2011a. Methane and carbon dioxide fluxes at the sediment-water interface in reservoir. Polish J. of Environ. Stud., 20(1), 81-86.
  • 14. Hobler T. 1986. Heat movement and exchangers (in Polish). Wydawnictwo Naukowo-Techniczne Warszawa.
  • 15. IPCC Climate Change, Synthesis report, 2007.
  • 16. Jędrysek M.O., Hałas S., Pieńkos T. 2014. Carbon isotopic composition of early-diagenetic methane: variations with sediments depth. Annales Universitatis Mariae Curie-Skłodowska, LXIX, 29–52.
  • 17. Lerman A. 1979. Geochemical processes water and sediment environment. John Wiley and Sons, NY.
  • 18. Miyajima T., Yamada Y., Hanba Y.T. 1995. Determining the stable isotope ratio of total dissolved inorganic carbon in lake water by GC/C/IRMS. Limnol. Oceanogr., 40(5), 994–1000.
  • 19. Ogrinc N., Lojen S., Faganeli J. (2002). A mass balance of carbon stable isotopes in an organicrich methane-producing lacustrine sediment (Lake Bled, Slovenia). Global and Planetary Change, 33, 57–72.
  • 20. Reeburgh W.S. 1980. Anaerobic methane oxidation: Rate depth distributions in Skan Bay sediments. Earth Planet. Sci. Lett., 47, 345–352.
  • 21. Sweerts J.–P.R.A. 1990. Oxygen consumption processes, mineralization and nitrogen cycling at the sediment – water interface of north temperate lakes. Ph.D. Thesis, Rijksuniversitet, Groningen.
  • 22. Zimmermann C.F., Keefe C.W., Bashe J. 1997. Determination of carbon and nitrogen in sediments and particulates/coastal waters using elemental analysis. Method 440.0. NER laboratory, U.S. EPA, Cincinnati, Ohio.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.