PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
One of the bottlenecks in widespread adoption of biosensors is the large and sophisticated bioanalytical system that is required to perform signal transduction and analysis. A miniaturized bioanalytical system facilitates biosensing techniques that are portable, easy to handle and inexpensive for fast and reliable measurements of biochemical species. Thus, downscaling the bioanalytical system has become a highly active research area, significantly assisted by recent advances in the microelectronics technology. In this work, a miniaturized system is designed and implemented for amperometric detection, and subsequently tested with a glucose biosensor based on the one-step approach utilizing water soluble poly(oaminophenol). Several experiments are conducted to assess the viability of this system including calibration, interference and application tests. The results are compared with the previously published work performed using the same biosensor tested with a commercial potentiostat in order to verify the applicability of the designed system.
Twórcy
autor
  • School of Engineering, Deakin University, Geelong Waurn Ponds Campus, Victoria, Australia
autor
  • Department of Chemistry, Middle East Technical University, Ankara, Turkey
autor
  • Department of Chemistry, Istanbul Technical University, Maslak, Turkey
autor
  • Department of Chemistry, Istanbul Technical University, Maslak, Turkey
autor
  • Department of Chemistry, Middle East Technical University, Ankara, Turkey; Department of Biotechnology, Middle East Technical University, Ankara, Turkey; Department of Polymer Science and Technology, Middle East Technical University, Ankara, Turkey; The Center for Solar Energy Research and Application (GUNAM), Middle East Technical University, Ankara, Turkey
autor
  • School of Engineering, Deakin University, Geelong Waurn Ponds Campus, Victoria, Australia
  • School of Engineering, Deakin University, Geelong Waurn Ponds Campus, Victoria 3216, Australia, kouzani@deakin.edu.au
Bibliografia
  • [1] Grieshaber D, MacKenzie R, Voros J, Reimhult E. Electrochemical biosensors – sensor principles and architectures. Sensors 2008;8:1400–58.
  • [2] Piero M, Nzaro GM, Njagi JM. Diabetes mellitus a devastating metabolic disorder. Asian J Biomed Pharmaceut Sci 2015;4:1–7.
  • [3] Wang J. Electrochemical glucose biosensors. Chem Rev 2008;108:814–25.
  • [4] Perez-Ruiz T, Martinez-Lozano C, Tomas V, Martin J. Determination of ATP via the photochemical generation of hydrogen peroxide using flow injection luminol chemiluminescence detection. Anal Bioanal Chem 2003;377:189–94.
  • [5] Foy GP, Pacey GE. Determination of ATP using chelationenhanced fluorescence. Talanta 1996;43:225–32.
  • [6] Xia Y, Ye J, Tan K, Wang J, Yang G. Colorimetric visualization of glucose at the submicromole level in serum by a homogenous silver nanoprism–glucose oxidase system. Anal Chem 2013;85:6241–7.
  • [7] Kawamoto Y, Shinozuka K, Kunitomo M, Haginaka J. Determination of ATP and its metabolites released from rat caudal artery by isocratic ion-pair reversed-phase high-performance liquid chromatography. Anal Biochem 1998;262:33–8.
  • [8] Soldatkin OO, Schuvailo OM, Marinesco S, Cespuglio R, Soldatkin AP. Microbiosensor based on glucose oxidase and hexokinase co-immobilised on platinum microelectrode for selective ATP detection. Talanta 2009;78:1023–8.
  • [9] Kucherenko IS, Didukh DY, Soldatkin OO, Soldatkin AP. Amperometric biosensor system for simultaneous determination of Adenosine-50-triphosphate and glucose. Anal Chem 2014;86:5455–62.
  • [10] Yoo EH, Lee SY. Glucose biosensors: an overview of use in clinical practice. Sensors 2010;10:4558–76.
  • [11] Chen C, Xie Q, Yang D, Xiao H, Fu Y, Tan Y, Yao S. Recent advances in electrochemical glucose biosensors: a review. RSC Adv 2013;3:4473–91.
  • [12] Chaubey A, Malhotra BD. Mediated biosensors. Biosens Bioelectron 2002;17:441–56.
  • [13] Ronkainen NJ, Halsall HB, Heineman WR. Electrochemical biosensors. Chem Soc Rev 2010;39:1747–63.
  • [14] Eggins BR. Chemical Sensors and biosensors. West Sussex, England,: John Wiley & Sons; 2002.
  • [15] Luppa PB, Sokoll LJ, Chan DW. Immunosensors – principles and applications to clinical chemistry. Clin Chim Acta 2001;314(1–2):1–26.
  • [16] Newman JD, Turner APF. Home blood glucose biosensors: a commercial perspective. Biosens Bioelectron 2005;20:2435–53.
  • [17] Han IS, Bae YH, Jung DY, Magda JJ. United States Patent No. US 6475750 B1. Salt Lake City, UT (US): M-Biotech, Inc.; 2002.
  • [18] Facchetti A. p-conjugated polymers for organic electronics and photovoltaic cell applications. Chem Mater 2011;23:733–58.
  • [19] Reddinger JL, Reynolds JR. Molecular engineering of pconjugated polymers. In: Capek I, Hernfández-Barajas J, Hunkeler D, Reddinger JL, Reynolds JR, Wandrey C, editors. Radical polymerisation polyelectrolytes Advances in polymer science, Vol. 145. Berlin, Heidelberg: Springer; 1999. p. 57–122.
  • [20] Lewis TW, Wallace GG, Smyth MR. Electrofunctional polymers: their role in the development of new analytical systems. Analyst 1999;124:213–9.
  • [21] Cosnier S. Biomolecule immobilization on electrode surfaces by entrapment or attachment to electrochemically polymerized films. A review. Biosens Bioelectron 1999;14:443–56.
  • [22] Ahuja T, Mir I, Kumar D, Rajesh. Biomolecular immobilization on conducting polymers for biosensing applications. Biomaterials 2007;28(5):791–805.
  • [23] Santhanam KSV. Conducting polymers for biosensors: rationale based on models. Pure Appl Chem1998;70:1259–62.
  • [24] Yu L, Zhang Y, Tong W, Shang J, Lv F, Chu PK, Guo W. Hierarchical composites of conductivity controllable polyaniline layers on the exfoliated graphite for dielectric application,. Compos Part A 2012;43:2039–45.
  • [25] Morita M. Electrochromic behavior and stability of polyaniline composite films combined with prussian blue. J Appl Polym Sci 1994;52:711–9.
  • [26] Chiang JC, MacDiarmid AG. 'Polyaniline': protonic acid doping of the emeraldine form to the metallic regime. Synth Met 1986;13:193–205.
  • [27] Uludag Y, Esen E, Kokturk G, Ozer H, Muhammad T, Olcer Z, Basegmez HIO, Simsek S, Barut S, Gok MY, Akgun M, Altintas Z. Lab-on-a-chip based biosensor for the real-time detection of aflatoxin. Talanta 2016;160:381–8.
  • [28] Tan HY, Loke WK, Nguyen NT, Tan SN, Tay NB, Wang W, Ng SH. Lab-on-a-chip for rapid electrochemical detection of nerve agent Sarin. Biomed Microdevices 2014;16:269–75.
  • [29] Yoon YJ, Li KHH, Low YZ, Yoon J, Ng SH. Microfluidics biosensor chip with integrated screen-printed electrodes for amperometric detection of nerve agent. Sens Actuator B Chem 2014;198:233–8.
  • [30] Rowe AA, Bonham AJ, White RJ, Zimmer MP, Yadgar RJ, Hobza TM, Honea JW, Ben-Yaacov I, Plaxco KW. CheapStat: an open-source, "do-it-yourself" potentiostat for analytical and educational applications. PLoS ONE 2011;6(9):e23783.
  • [31] Dryden MDM, Wheeler AR. DStat: a versatile, open-source potentiostat for electroanalysis and integration. PLoS ONE 2015;10(10):e0140349.
  • [32] Nemiroski A, Christodouleas DC, Hennek JW, Kumar AA, Maxwell EJ, Fernández-Abedul MT, Whitesides GM. Universal mobile electrochemical detector designed for use in resource-limited applications. Proc Natl Acad Sci USA 2014;111:11985.
  • [33] Giordano GF, Vicentini MBR, Augusto RC Murer F, Ferrão MF, Helfer GA, da Costa AB, Gobbi AL, Hantao LW, Lima RS. Point-of-use electroanalytical platform based on homemade potentiostat and smartphone for multivariate data processing. Electrochim Acta 2016;219:170–7.
  • [34] Pandiaraja M, Benjamin AR, Madasamy T, Vairamani K, Arya A, Sethy NK, Bhargava K, Karunakaran C. A costeffective volume miniaturized and microcontroller based cytochrome c assay. Sens Actuator A Phys 2014;220:290–7.
  • [35] Meloni GN. Building a microcontroller based potentiostat: a inexpensive and versatile platform for teaching electrochemistry and instrumentation. J Chem Educ 2016;93(7):1320–2.
  • [36] Bicak TC, Soylemez S, Buber E, Toppare L, Yagci Y. Poly(oaminophenol) prepared by Cu(II) catalyzed air oxidation and its use as a bio-sensing architecture. Polym Chem 2017;8:3881–8.
  • [37] Corporation Atmel. ATxmega32E5/16E5/8E5 – Complete Datasheet. 1st ed. San Jose: Atmel Publishing; 2016. p. 1–147.
  • [38] Corporation Atmel. Atmel AVR XMEGA E – Complete Datasheet. 1st ed. San Jose: Atmel Publishing; 2014. p. 1–447.
  • [39] Gokoglan TC, Soylemez S, Kesik M, Toksabay S, Toppare L. Selenium containing conducting polymer based pyranose oxidase biosensor for glucose detection. Food Chem 2015;172:219–24.
  • [40] Ucan D, Ekiz Kanik F, Karatas Y, Toppare L. Synthesis and characterization of a novel polyphosphazene and its application to biosensor in combination with a conducting polymer. Sens Actuators B Chem 2014;201:545–54.
  • [41] Buber E, Yuzer A, Soylemez S, Kesik M, Ince M, Toppare L. Construction and amperometric biosensing performance of a novelplatform containing carbon nanotubes-zinc phthalocyanine and aconducting polymer. Int J Biol Macromol 2017;96:61.
  • [42] Soylemez S, Yılmaz T, Buber E, Arslan Udum Y, Ozcubukcu S, Toppare L. Polymerization and biosensor application of water soluble peptide-SNS type monomer conjugates,. J Mater Chem B 2017;5:7384–92.
  • [43] Liu Y, Wang M, Zhao F, Xu Z, Dong S. The direct electron transfer of glucose oxidase and glucose biosensor based on carbon nanotubes/chitosan matrix. Biosens Bioelectron 2005;21:984–8.
  • [44] Palanisamy S, Cheemalapati S, Chen SM. Amperometric glucose biosensor based on glucose oxidase dispersed in multiwalled carbon nanotubes/graphene oxide hybrid biocomposite. Mater Sci Eng C 2014;34:207–13.
  • [45] Senel M, Nergiz C, Cevik E. Novel reagentless glucose biosensor based on ferrocene cored asymmetric PAMAM dendrimers. Sens Actuators B Chem 2013;176:299–306.
  • [46] Homma T, Sumita D, Kondo M, Kuwahara T, Shimomura M. J Electroanal Chem 2014;712:119.
  • [47] Holzinger M, Bouffier L, Villalonga R, Cosnier S. Adamantane/b-cyclodextrinaffinity biosensors based on single walled carbon nanotubes. Biosens Bioelectron 2009;24:1128–34.
  • [48] Buber E, Kesik M, Soylemez S, Toppare L. A bio-sensing platform utilizing a conjugated polymer, carbon nanotubes and PAMAM combination,. J Electroanal Chem 2017;799:370–6.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e324682b-16ac-433d-8fba-220653e3c7dc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.