Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Drought sensitivity characteristics and relationships between drought indices over Upper Blue Nile basin

Treść / Zawartość
Warianty tytułu
Charakterystyka wrażliwości na suszę i zależności między jej wskaźnikami dla regionu górnego Nilu Błękitnego
Języki publikacji
Drought is an extreme event that causes great economic and environmental damage. The main objective of this study is to evaluate sensitivity, characterization and propagation of drought in the Upper Blue Nile. Drought indices: standardized precipitation index (SPI) and the recently developed standardized reconnaissance drought index (RDIst) are applied for five weather stations from 1980 to 2015 to evaluate RDIst applicability in the Upper Blue Nile. From our analysis both SPI and RDIst applied for 3-, 6-, 12 month of time scales follow the same trend, but in some time steps the RDIst varies with smaller amplitude than SPI. The severity and longer duration of drought compared with others periods of meteorological drought is found in the years 1984, 2002, 2009, 2015 including five weather stations and entire Upper Blue Nile. For drought relationships the correlation analysis is made across the time scales to evaluate the relationship between meteorological drought (SPI), soil moisture drought (SMI), and hydrological drought (SRI). We found that the correlation between three indices (SPI, SMI and SRI) at different time scales the 24-month time scale is dominant and are given by 0.82, 0.63 and 0.56.
Susza jest ekstremalnym zjawiskiem, które powoduje ogromne straty ekonomiczne i szkody środowiskowe. Celem badań było określenie wrażliwości na suszę, charakterystyk i propagacji suszy w regionie górnego Nilu Błękitnego. Dwa wskaźniki suszy – wskaźnik standaryzowanego opadu (SPI) i niedawno opracowany wskaźnik RDIst (ang. standardized reconnaissance drought index) zastosowano do danych z pięciu stacji meteorologicznych z lat 1980 do 2015, aby ocenić przydatność tego drugiego do oceny sytuacji w regionie. Z analiz przeprowadzonych przez autorów niniejszej publikacji wynika, że oba wskaźniki wykazywały podobny trend zmian w przedziałach czasowych 3-, 6- i 12-miesięcznych, ale w pewnych okresach wskaźnik RDIst cechowała mniejsza amplituda zmian niż wskaźnik SPI. W odniesieniu do pięciu stacji meteorologicznych i całego obszaru górnego biegu Nilu Błękitnego najbardziej surowe i długotrwałe susze stwierdzono w latach 1984, 2002, 2009 i 2015 w porównaniu z innymi latami badań. Wykonano także analizę korelacji między wskaźnikami suszy meteorologicznej SPI, suszy glebowej SMI i suszy hydrologicznej SRI. Najsilniejszą korelację między tymi wskaźnikami stwierdzono dla 24-miesięcznych przedziałów czasowych, a odpowiednie współczynniki korelacji wynosiły 0,82, 0,63 i 0,56.
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
  • Bahir Dar University, Department of Physics, Washera Geospace and Radar Science Laboratory, Science College Bahir Dar, P.O. Box 79, Ethiopia; Arba Minch University, Faculty of Meteorology and Hydrology, Arba Minch, Ethiopia,
  • Bahir Dar University, Science College, Department of Physics Washera Geospace and Radar Science Laboratory, Bahir Dar, Ethiopia,
  • National Institute of Meteorological Sciences (NIMS), Climate Research Division, Jeju-do, Republic of Korea,
  • Bahir Dar University, Department of Physics, Washera Geospace and Radar Science Laboratory, Bahir Dar, Ethiopia,
  • ABERA W., FORMETTA G., BROCCA L., RIGON R. 2016. Modeling the water budget of the Upper Blue Nile basin using the JGrass-NewAge model system and satellite. Hydrology and Earth System Sciences. Vol. 21 p. 3145–3165.
  • AHMED A.A., ISMAIL U.H.A.E. 2008. Sediment in the Nile River system [online]. UNESCO-IHP-International Sediment Initiative. Available at:
  • AMS Council 1997. Policy statement: Meteorological drought. Bulletin of American Meteorological Society. No. 78 p. 847–849.
  • AWULACHEW S.B., MCCARTNEY M., STEENHUIS T.S., AHMED A.A. 2009. A review of hydrology, sediment and water resource use in the Blue Nile Basin. IWMI Working Paper. No. 131. Colombo, Sri Lanka. IWMI pp. 81.
  • BAYISSA Y.A. 2018. Developing an impact-based combined drought index for monitoring crop yield anomalies in the Upper Blue Nile Basin, Ethiopia. CRC Press. ISBN 978-0-367-02451-2 pp. 146.
  • BAYISSA Y.A., MOGES S.A., XUAN Y., VAN ANDEL S.J., MASKEY S., SOLOMATINE D.P., GRIENSVEN A.V., TADESSE T. 2015. Spatio-temporal assessment of meteorological drought under the influence of varying record length: The case of Upper Blue Nile Basin, Ethiopia. Hydrological Sciences Journal. Vol. 60. Iss. 11 p. 1927–1942.
  • BAYISSA Y., TADESSE T., DEMISSE G. And SHIFERAW A. 2017. Evaluation of satellite-based rainfall estimates and application to monitor meteorological drought for the Upper Blue Nile Basin, Ethiopia. Remote Sensing. Vol. 9. Iss. 7 p. 1–17.
  • BĄK B., KUBIAK-WÓJCICKA K. 2017. Impact of meteorological drought on Hydrological Drought in Toruń (central Poland) in the period of 1971– 2015. Journal of Water and Land Development. No. 32 p. 3–12. DOI 10.1515/jwld-2017-0001.
  • BERGMAN K.H., SABOL P., MISKUS D. 1988, Experimental indices for monitoring global drought conditions. In: Proc. 13th Annual Climate Diagnostics Workshop. Cambridge, MA. US Dept. of Commerce p. 190–197.
  • CONWAY D. 2000. The climate and hydrology of the Upper Blue Nile River. Geographical Journal. Vol. 166. Iss. 1 p. 49–62.
  • DURDU Ö.F. 2010. Application of linear stochastic models for drought forecasting in the Büyük Menderes River basin, western Turkey. Stochastic Environmental Research and Risk Assessment. Vol. 24. Iss. 8 p. 1145–1162.
  • EAGLESON P.S. 1978. Climate, soil, and vegetation: 6. Dynamics of the annual water balance. Water Resources Research. Vol. 14. No. 5 p.749–764.
  • FAN Y., VAN DEN DOOL H. 2004. Climate Prediction Center global monthly soil moisture data set at 0.5 resolution for 1948 to present. Journal of Geophysical Research: Atmospheres. Vol. 109. D10.
  • FEKADU K. 2015. Ethiopian seasonal rainfall variability and prediction using canonical correlation analysis (CCA). Earth Sciences. Vol. 4. Iss. 3 p. 112–119.
  • FLEIG A.K., TALLAKSEN L.M., HISDAL H., DEMUTH S. 2006. A global evaluation of streamflow drought characteristics. Hydrology and Earth System Sciences Discussions. Vol. 10. Iss. 4 p. 535–552.
  • GEBREHIWOT T., VAN DER VEEN A., MAATHUIS B. 2011. Spatial and temporal assessment of drought in the Northern highlands of Ethiopia. International Journal of Applied Earth Observation and Geoinformation. Vol. 13. Iss. 3 p. 309–321.
  • HASLINGER K., KOFFLER D., SCHÖNER W., LAAHA G. 2014. Exploring the link between meteorological drought and streamflow: Effects of climate–catchment interaction. Water Resources Research. Vol. 50. Iss. 3 p. 2468–2487.
  • HEIM R. Jr 2002. A review of twentieth-century drought indices used in the United States. Bulletin of the American Meteorological Society. Vol. 83. No. 8 p. 1149–1166.
  • HUANG J., VAN DEN DOOL H.M., GEORGARAKOS K.P. 1996. Analysis of model-calculated soil moisture over the United States (1931–1993) and applications to long-range temperature forecasts. Journal of Climate. Vol. 9. Iss. 6 p. 1350–1362.
  • JAIN V.K., PANDEY R.P., JAIN M.K., BYUN H.R. 2015. Comparison of drought indices for appraisal of drought characteristics in the Ken River Basin. Weather and Climate Extremes. Vol. 8 p. 1–11.
  • JEMAI S., ELLOUZE M., AGOUBI B., ABIDA H. 2016. Drought intensity and spatial variability in Gabes Watershed south-eastern Tunisia. Journal of Water and Land Development. No. 31 p. 63–72. DOI 10.1515/jwld-2016-0037.
  • KHEZAZNA A., AMARCHI H., DERDOUS O., BOUSAKHRIA F. 2017. Drought monitoring in the Seybouse basin (Algeria) over the last decades. Journal of Water and Land Development. No. 33 p. 79–88. DOI 10.1515/jwld-2017-0022.
  • MCKEE T.B., DOESKEN N.J., KLEIST J. 1993. The relationship of drought frequency and duration to time scales. In: Proceedings of the 8th Conference on Applied Climatology. Vol. 17. Iss. 22 p. 179–183.
  • MISHRA A.K., SINGH V.P. 2010. A review of drought concepts. Journal of Hydrology. Vol. 391. Iss. 1– 2 p. 202–216.
  • NGAKA M.J. 2012. Drought preparedness, impact and response: A case of the Eastern Cape and Free State provinces of South Africa. Jàmbá: Journal of Disaster Risk Studies. Vol. 4. Iss. 1. Art. #47 p. 1–10. DOI 10.4102/jamba.v4i1.47
  • SHANKO D., CAMBERLIN P. 1998. The effects of the Southwest Indian Ocean tropical cyclones on Ethiopian drought. International Journal of Climatology. Vol. 18. Iss. 12 p. 1373–1388.
  • TIGKAS D. 2008. Drought characterisation and monitoring in regions of Greece. European Water. Vol. 23. Iss. 24 p. 29–39.
  • TSAKIRIS G., PANGALOU D., VANGELIS H. 2007. Regional drought assessment based on the reconnaissance drought index (RDI). Water Resources Management. Vol. 21. Iss. 5 p. 821–833.
  • TSAKIRIS G., VANGELIS H. 2005. Establishing a drought index incorporating evapotranspiration. European Water. Vol. 9. Iss. 10 p. 3–11.
  • VANGELIS H., TIGKAS D., TSAKIRIS G. 2013. The effect of PET method on reconnaissance drought index (RDI) calculation. Journal of Arid Environments. Vol. 88 p. 130–140.
  • VISTE E., KORECHA D., SORTEBERG A. 2013. Recent drought and precipitation tendencies in Ethiopia. Theoretical and Applied Climatology. Vol. 112. Iss. 3–4 p. 535–551.
  • WARA M.W., RAVELO A.C., DELANEY M.L. 2005. Permanent El Niño-like conditions during the Pliocene warm period. Science. Vol. 309. Iss. 5735 p. 758–761.
  • YASA I W., BISRI M., SHOLICHIN M., ANDAWAYANTI U. 2018. Hydrological drought index based on reservoir capacity – Case study of Batujai dam in Lombok Island, West Nusa Tenggara, Indonesia. Journal of Water and Land Development. No. 38 p. 155–162. DOI 10.2478/jwld-2018-0052.
  • YIRDAW E., TIGABU M., MONGE MONGE A.A. 2017. Rehabilitation of degraded dryland þy ecosystems – review. Silva Fennica. Vol. 51. No. 1b.1673. DOI 10.14214/sf.1673.
  • ZAROUG M.A., ELTAHIR E.A., GIORGI F. 2014. Droughts and floods over the upper catchment of the Blue Nile and their connections to the timing of El Niño and La Niña events. Hydrology and Earth System Sciences. Vol. 18. Iss. 3 p. 1239–1249.
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.