Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-e165b6ec-6d7a-47f6-a0c6-0b0ee3f5c7ab

Czasopismo

Archives of Electrical Engineering

Tytuł artykułu

An extended dynamic thermal model of a permanent magnet excited synchronous motor

Autorzy Mbo'o, C. P.  Hameyer, K. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
Abstrakty
EN The purpose of this paper is to develop a dynamic thermal model of a permanent magnet excited synchronous motor (PMSM). The model estimates the temperature at specific points of the machine during operation. The model is implemented using thermal network theory, whose parameters are determined by means of analytical approaches. Usually thermal models are initialized and referenced to room temperature. However, this can lead to incorrect results, if the simulations are performed when the electrical machine operates under “warm” conditions. An approach is developed and discussed in this paper, which captures the model in critical states of the machine. The model gives feedback by online measured quantities to estimate the initial temperature. The paper provides an extended dynamic thermal model, which leads to a more accurate and more efficient thermal estimation.
Słowa kluczowe
EN thermal modeling   thermal network   finite element method   iron losses   permanent magnet excited synchronous machine (PMSM)  
Wydawca Polish Academy of Sciences, Committee on Electrical Engineering
Czasopismo Archives of Electrical Engineering
Rocznik 2013
Tom Vol. 62, nr 3
Strony 375--386
Opis fizyczny Bibliogr. 6 poz., rys., wz.
Twórcy
autor Mbo'o, C. P.
autor Hameyer, K.
  • Institute of Electrical Machines, RWTH Aachen University Schinkelstr. 4, 52062 Aachen, Germany
Bibliografia
[1] Lindstroem J., Thermal Model of a Permanent Magnet Motor for a Hybrid Electric Vehicle. Department of Electric Power Engineering, Chalmers University of Technology Göteborg, Sweden (1999).
[2] Kylander G., Thermal modelling of small cage induction motors. PhD. Dissertation, School of Electrical and Computer Engineering, Chalmers University of Technology Göteborg, Sweden, Tech. Report. 265 (1995).
[3] Demetriades G.D., de la Parra H.Z., Andersson E., Olsson H., A real-time thermal model of a permanentmagnet synchronous Motor. IEEE Transactions on Power Electronics 25(2): 463-474 (2010).
[4] Bertotti G., Boglietti A., Chiampi M. et al. An improved estimation of iron losses in rotating electricalmachines. IEEE Trans. Magn. 27(6): 5007-5009 (1991).
[5] Gracia M.H., Lange E., Hameyer K., Numerical calculation of iron losses in electrical machineswith a modified post-processing formula. Proceedings of the 16th International Symposium on Electromagnetic Fields COMPUMAG, Aachen, Germany (2007).
[6] Jacobs S., Hectors D., Henrotte F. et al. Magnetic material optimization for hybrid vehicle PMSMdrives. EVS24-International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium, Stavanger, Norway (2009).
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-e165b6ec-6d7a-47f6-a0c6-0b0ee3f5c7ab
Identyfikatory
DOI 10.2478/aee-2013-0030