Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-e150a882-740f-4c94-8027-2937329d089a

Czasopismo

Polish Journal of Chemical Technology

Tytuł artykułu

Catalytic activity of cobalt and cerium catalysts supported on calcium hydroxyapatite in ethanol steam reforming

Autorzy Dobosz, J.  Hull, S.  Zawadzki, M. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
Abstrakty
EN In this paper, Co,Ce/Ca10(PO4)6(OH)2 catalysts with various cobalt loadings for steam reforming of ethanol (SRE) were prepared by microwave-assisted hydrothermal and sol-gel methods, and characterized by XRD, TEM, TPR-H2, N2 adsorption-desorption measurements and cyclohexanol (CHOL) decomposition tests. High ethanol conversion (close to 100%) was obtained for the catalysts prepared by both methods but these ones prepared under hydrothermal conditions (HAp-H) ensured higher hydrogen yield (3.49 mol H2/mol C2H5OH) as well as higher amount of hydrogen formed (up to 70%) under reaction conditions. The superior performance of 5Co,10Ce/HAp-H catalyst is thought to be due to a combination of factors, including increased reducibility and oxygen mobility, higher density of basic sites on its surface, and improved textural properties. The results also show a significant effect of cobalt loading on catalysts efficiency in hydrogen production: the higher H2 yield exhibit catalysts with lower cobalt content, regardless of the used synthesis method.
Słowa kluczowe
EN hydroxyapatite   cobalt   cerium   ethanol steam reforming   hydrogen production  
Wydawca West Pomeranian University of Technology. Publishing House
Czasopismo Polish Journal of Chemical Technology
Rocznik 2016
Tom Vol. 18, nr 3
Strony 59--67
Opis fizyczny Bibliogr. 42 poz., rys., tab.
Twórcy
autor Dobosz, J.
  • Polish Academy of Sciences, Institute of Low Temperature and Structure Research, Department of Nanomaterials Chemistry and Catalysis, PO Box 1410, 50-950 Wroclaw, Poland
autor Hull, S.
  • Wroclaw University of Technology, Division of Chemistry and Technology Fuels, Gdanska 7/9, 50-344 Wrocław, Poland
autor Zawadzki, M.
  • Polish Academy of Sciences, Institute of Low Temperature and Structure Research, Department of Nanomaterials Chemistry and Catalysis, PO Box 1410, 50-950 Wroclaw, Poland, M.Zawadzki@int.pan.wroc.pl
Bibliografia
1. Mathure, P.V., Ganguly, S., Patwardhan, A.V. & Saha, R.K. (2007). Steam reforming of ethanol using a commercial nickel-based catalyst. Ind. Eng. Chem. Res. 46, 8471-8479. DOI: 10.1021/ie070321k.
2. Soyal-Baltacioglu, F., Aksoylu, A.E. & Önsan, Z.I. (2008). Steam reforming of ethanol over Pt-Ni Catalysts. Catal. Today 138, 183-186. DOI: 10.1016/j.cattod.2008.05.035.
3. Basagiannis, A.C., Panagiotopoulou P. & Verykios X.E. (2008). Low temperature steam reforming of ethanol over supported noble metal catalysts. Top. Catal. 51, 2-12. DOI: 10.1016/j.cattod.2008.05.035.
4. Erdőhelyi, A., Raskó, J., Kecskés, T., Tóth, M., Dömök, M. & Baán, K. (2006). Hydrogen formation in ethanol reforming on supported noble metal catalysts. Catal. Today 116, 367-376. DOI: 10.1016/j.cattod.2006.05.073.
5. Furtado, A.C., Alonso, Ch.G., Cantão, M.P. & Fernandes- Machado, N.R.C. (2009). Bimetallic catalysts performance during ethanol steam reforming: influence of support materials. Int. J. Hydrogen Energy 34, 7189-7196. DOI: 10.1016/j. ijhydene.2009.06.060.
6. Lovón, A.S.P., Lovón-Quintana, J.J., Almerindo, G.I., Valenca, G.P., Bernardi, M.I.B., Araújo, V.D., Rodrigues, T.S., Robles-Dutenhefner, P.A. & Fajardo, H.V. (2012). Preparation, structural characterization and catalytic properties of Co/CeO2 catalysts for the steam reforming of ethanol and hydrogen production. J. Pow. Sour. 216, 281-289. DOI: 10.1016/j.jpowsour.2012.05.066.
7. He, L., Berntsen, H. & Chen, D. (2010). Approaching sustainable H2 production: sorption enhanced steam reforming of ethanol. J. Phys. Chem. A 114, 3834-3844. DOI: 10.1021/ jp906146y.
8. Haryanto, A., Fernando, S., Murali, N. & Adhikari, S. (2005). Current status of hydrogen production techniques by steam reforming of ethanol: a review. Energ. Fuel 19, 2098-2106. DOI: 10.1021/ef0500538.
9. Wang, H., Ye, J.L., Liu, Y., Li, Y.D. & Qin, Y.N. (2007). Steam reforming of ethanol over Co3O4/CeO2 catalysts prepared by different methods. Catal. Today 129, 305-312. DOI: 10.1016/j.cattod.2006.10.012.
10. Liberatori, J.W.C., Ribeiro, R.U., Zanchet, D., Noronha, F.B. & Bueno, J.M.C. (2007). Steam reforming of ethanol on supported nickel catalysts. Appl. Catal. A 327, 197-204. DOI: 10.1016/j.apcata.2007.05.010.
11. Nishiguchi, T., Matsumoto, T., Kanai, H., Utani, K., Matsumura, Y., Shen, W.J. & Imamura, S. (2005). Catalytic steam reforming of ethanol to produce hydrogen and acetone. Appl. Catal. A 279, 273-277. DOI: 10.1016/j.apcata.2004.10.035.
12. Soykal, I.I., Sohn, H. & Ozkan, U.S. (2012). Effect of support particle size in steam reforming of ethanol over Co/ CeO2 catalysts. ASC Catal. 2, 2335-2348.
13. Llorca, J., Homs, N., Sales, J. & Ramírez de la Piscina, P. (2002). Efficient production of hydrogen over supported cobalt catalysts from ethanol steam reforming. J. Catal. 209, 306-317. DOI: 10.1006/jcat.2002.3643.
14. Bayram, B., Soykal, I.I., von Deak, D., Miller, J.T. & Ozkan, U.S. (2011). Ethanol steam reforming over Co-based catalysts: investigation of cobalt coordination environment under reaction conditions. J. Catal. 284, 77-89. DOI: 10.1016/j. jcat.2011.09.001. !
15. Song, H., Zhang, L. & Ozkan, U.S. (2010). Investigation of the reaction network in ethanol steam reforming over supported cobalt catalysts. Ind. Eng. Chem. Res. 49, 8984-8989. DOI: 10.1021/ie100006z.
16. Song, H., Zhang, L. & Ozkan, U.S. (2012) The effect of surface acidic and basic properties on the performance of cobalt-based catalysts for ethanol steam reforming. Top. Catal. 55, 1324-1331. DOI: 10.1007/s11244-01209918-8.
17. Park, J.H., Lee, D.W., Im, S.W., Lee, Y.H., Suh, D.J. & Jun, K.W. (2012). Oxidative coupling of methane using nonstoichiometric lead hydroxyapatite catalyst mixtures. Fuel 94, 433-439. DOI: 10.1016/j.fuel.2011.08.056.
18. Hakim, L., Yaakob, Z., Ismail, M., Daud, W.R.W. & Sari, R. (2013). Hydrogen production by steam reforming of glycerol over Ni/Ce/Cu hydroxyapatite-supported catalysts. Chem. Pap. 67, 703-712. DOI: 10.2478/s11696-013-0368-y
19. Yasukawa, A., Gotoh, K., Tanaka, H. & Kondori, K. (2012). Preparation and structure of calcium hydroxyapatite substituted with light rare earth ions. Coll. Surf. A. 393, 53-59. DOI: 10.1016/j.colsurfa2011.10.024.
20. Sugiyama, S., Shono, T., Makino, D., Moriga, T., Hayashi, H. (2003). Enhancement of the catalytic activities in propane oxidation and H-D exchangeability of hydroxyl groups by the incorporation with cobalt into strontium hydroxyapatite. J. Catal. 214, 8-14. DOI: 10.1016/S0021-9517(02)00101-X.
21. Aellach, B., Ezzamarty, A., Leglise, J., Lamonier, C. & Lamonier J.F. (2010). Calcium-deficient and stoichiometric hydroxyapatites promoted by cobalt for the catalytic removal of oxygenated volatile organic compounds. Cat. Lett. 135, 197-206. DOI: 10.1007/s10562-010-0282-7.
22. Yaakob, Z., Hakim, L., Kumar, M.N.S., Ismail, M., Dau, W.R.W. (2010). Hydroxyapatite supported nickel catalyst for hydrogen production. Am. J. Sci. Ind. Res. 1(2) 122-126. DOI: 10.5251/ajsir2010.1.2.122.126.
23. Ogo, S., Onda, A. & Yanagisawa, K. (2008). Hydrothermal synthesis of vanadate-substituted hydroxyapatites, and catalytic properties for conversion of 2-propanol. Appl. Catal. A 348, 129-134. DOI: 10.1016/j.apcata.2008.06.035.
24. Jaworski, J.W., Cho, S., Kim, Y., Jung, J.H., Jeon, H. S., Min, B.K. & Kwon, K. (2013). Hydroxyapatite supported cobalt catalysts for hydrogen generation. J. Coll. Interf. Sci. 394, 401-408. DOI: 10.1016/j.jcis.2012.11.036.
25. Fathi, M.H. & Hanifi, A. (2009). Sol-gel derived nanostructure hydroxyapatite powder and coating: aging time optimisation. Adv. Appl. Ceram. 6, 363-368. DOI: 10.1179/174367609X414080.
26. Martin, D. & Duprez, D. (1997). Evaluation of the acid-base surface properties of several oxides and supported metal catalysts by means of model reactions. J. Mol. Catal. A-Chem. 118, 113-128. DOI: 10.1016/S1381-1169(96)00371-8.
27. Konsolakis, M., Sgourakis, M. & Carabineiro, S.A.C. (2015). Surface and redox properties of cobalt-ceria binary oxides: on the effect of Co content and pretreatment conditions. Appl. Surf. Sci. 341, 48-54. DOI: 10.1016/j.apsusc.2015.02.188.
28. Liotta, L.F., Di Carlo, G., Pantaleo, G. & Deganello, G. (2005). Co3O4/CeO2 and Co3O4/CeO2-ZrO2 composite catalysts for methane combustion: correlation between morphology reduction and catalytic activity. Catal. Commun. 6, 329-336. DOI: 10.1016/j.catcom.2005.02.006.
29. Liotta, L.F., Ousmane, M., Di Carlo, G., Pantaleo, G., Deganello, G., Boreave, A. & Giroir-Fendler A. (2009). Catalytic removal of toluene over Co3O4-CeO2 mixed oxide catalysts: comparison with Pt/Al2O3. Cat. Lett. 127, 270-276. DOI: 10.1007/s10562-008-9640-0.
30. Zanchet, D., Santos, J.B.O., Damyanova, S., Gallo, J. M.R. & Buena, J.M.C. (2015). Toward understanding metal-catalyzed ethanol reforming. ASC Catal. 5, 3841-3863. DOI: 10.1021/cs5020755.
31. Batista, M.S., Santos, R.K.S., Assaf, E.M., Assaf, J.M. & Ticianelli, E.A. (2004). High efficiency steam reforming of ethanol by cobalt-based catalysts. J. Pow. Sour. 134, 27-32. DOI: 10.1016/j.jpowsour.2004.01.052.
32. Llorca, J., Dalmon, J.A., de la Piscina, P.R. & Homs, N. (2003). In situ magnetic characterization of supported cobalt catalysts under steam-reforming of ethanol. Appl. Catal. A 243, 261-269. DOI: 10.1016/S0926-860X(02)00546-X.
33. Llorca, J., de la Piscina, P.R., Dalmon, J.A. & Homs, N. (2004). Transformation of Co3O4 during ethanol steam-reforming. Activation process for hydrogen production. Chem. Mater. 16, 3573-3578. DOI: 10.1021/cm049311p.
34. Batista, M.S., Santos, R.K.S., Assaf, E.M., Assaf, J.M. & Ticianelli, E.A. (2003). Characterization of the activity and stability of supported cobalt catalysts for the steam reforming of ethanol. J. Pow. Sour. 124, 99-103. DOI: 10.1016/S0378-7753(03)00599-8.
35. de la Peña O’Shea, V.A., Homs, N., Pereira, E.B., Nafria, R. & de la Piscina, P.R. (2007). X-ray diffraction study of Co3O4 activation under ethanol steam-reforming. Catal. Today 126, 148-152. DOI: 10.1016/j.cattod.2006.10.002.
36. Karim, A.M., Su, Y., Engelhard, M.H., King, D.L. & Wang, Y. (2011). Catalytic Roles of Co0 and Co2+ during steam reforming of ethanol on Co/MgO catalysts. ACS Catal. 1, 279-286. DOI: 10.1021/cs200014j.
37. Lebarbier, V.M., Karim, A.M., Engelhard, M.H., Wu, Y., Xu, B.Q., Petersen, E.J., Datye, A.K. & Wang, Y. (2011). The effect of zinc addition on the oxidation state of cobalt in Co/ZrO2 catalysts. ChemSusChem 4, 1679-1684. DOI: 10.1002cssc.201100240.
38. Galetti, A.E., Gomez, M.F., Arrúa, L.A. & Abello, M.C. (2008). Hydrogen production by ethanol reforming over NiZnAl catalysts. Influence of Ce addition on carbon deposition. Appl. Catal. A 348, 94-102. DOI: 10.1016/j.apcata.2008.06.039.
39. Song, H. & Ozkan, U.S. (2009). Ethanol steam reforming over Co-based catalysts: role of oxygen mobility. J. Catal. 261, 66-74. DOI: 10.1016/j.jcat.2008.11.006.
40. Xu, W., Liu, Z., Johnston-Peck, A.C., Senanayake, S.D., Zhou, G., Stacchiola, D., Stach, E.A. & Rodriguez, J.A. (2013). Steam reforming of ethanol on Ni/CeO2: reaction pathway and interaction between Ni and the CeO2 support. ACS Catal. 3, 975-984. DOI: 10.1021/cs4000969.
41. Machocki, A., Denis, A., Grzegorczyk, W. & Gac, W. (2010). Nano- and micro-powder of zirconia and ceria-supported cobalt catalysts for steam reforming of bio-ethanol. Appl. Surf. Sci. 256, 5551-5558. DOI: 10.1016/j.apsusc.2009.12.137.
42. Kumar A., Prasad R. & Sharma Y.C. (2014). Steam reforming of ethanol: production of renewable hydrogen. Int. J. Environ. Res. 3, 203-212. From Research India Publication: http://www.ripublication.com/ijerd.htm
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-e150a882-740f-4c94-8027-2937329d089a
Identyfikatory
DOI 10.1515/pjct-2016-0049