Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button

http://yadda.icm.edu.pl:80/baztech/element/bwmeta1.element.baztech-e0fc64b1-fb5b-4558-b8ab-84dd78353652

Czasopismo

Polish Journal of Chemical Technology

Tytuł artykułu

Modyfication of photocatalytic properties of titanium dioxide by mechanochemical method

Autorzy Dulian, P.  Buras, M.  Żukowski, W. 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
Abstrakty
EN The paper presents a simple way to improve the photocatalytic properties of titanium dioxide using mechanochemical method. The TiO2 (Anatase) powders was subjected to high-energy ball milling in dry environment and in methanol. It has been shown that it is possible to induce the phase transformation from Anatase to Rutile and produce a material with a higher photocatalytic activity in the UV light. Physicochemical characteristics of the products were based on the following methods and techniques: X-ray powder diffraction (XRD), IR and UV-Vis (DR) spectroscopy, measurements of specific surface area (BET). The photocatalytic activity of the powders was measured in the decomposition reaction of methyl orange in water.
Słowa kluczowe
EN mechanochemistry   high-energy ball milling   titanium dioxide   photocatalysis  
Wydawca West Pomeranian University of Technology. Publishing House
Czasopismo Polish Journal of Chemical Technology
Rocznik 2016
Tom Vol. 18, nr 3
Strony 68--71
Opis fizyczny Bibliogr. 16 poz., rys., wyk.
Twórcy
autor Dulian, P.
autor Buras, M.
  • Cracow University of Technology, Faculty of Chemical Engineering and Technology, Warszawska 24, 310155 Cracow, Poland
autor Żukowski, W.
  • Cracow University of Technology, Faculty of Chemical Engineering and Technology, Warszawska 24, 310155 Cracow, Poland
Bibliografia
1. Prado, J. & Esplugas, S. (1999) Comparison of different advanced oxidation processes involving ozone to eliminate atrazine. Ozone Sci. Eng. 21(1), 39-52. DOI: 10.1080/01919519908547258.
2. Homem, V. & Santos, L. (2011) Degradation and removal methods of antibiotics form aqueous matrices - A review. J. Environ. Manage. 92(10), 2304-2347. DOI: 10.1016/j. jenvman.2011.05.023.
3. Manyala, R. Ed. (2010). Solar Collectors and Panels, Theory and Applications. Rikea: INTECH.
4. Mills, A. & Hunte, S.L. (1997). An overview of semiconductor photocatalysis. J. Photochem. Photobiol. A: Chem. 108, 1-35. DOI: 10.1016/S1010-6030(97)00118-4.
5. Chen, X. & Mao, S.S. (2007). Titanium Dioxide nanomaterials: Synthesis, Properties, Modifications and Applications. Chem. Rev. 107, 2891-2959. DOI: 10.1021/cr0500535.
6. Carp, O., Huisman, C.L. & Reller, A. (2004) Photoinduced reactivity of titanium dioxide. Progr. Sol. State Chem. 32, 33-177. DOI: 10.1016/j.progsolidstchem. 2004.08.001.
7. Marschall, R. & Wang, L. (2014). Non-metal doping of transition metal oxides for visible-light photocatalysis. Cat. Today 225, 111-135. DOI: 10.1016/j.cattod.2013.10.088.
8. Zong, X. & Wang, L. (2014). Ion-exchangeable semiconductor materials for visible light-induced photocatalysis, J. Photochem. Photobiol. C: Photochem. Rev. 18, 32-49. DOI: 10.1016/j.jphotochemrev.2013.10.001.
9. Balaz, P. (2008). Mechanochemistry in Nanoscience and Minerals Engineering, Berlin, Heidelberg, Springer.
10. Dinnebier, R.E. & Brillinge, S.J.L. Eds. (2008). Powder Diffraction Theory and Practice, Cambridge, RSC Publishing.
11. Dulian, P. (2016). Solid-State Mechanochemical Syntheses of Perovskites. In Pan, L. & Zhu, G. Perovskite Materials - Synthesis, Characterisation, Properites, and Applications (3-26) Rikea, INTECH.
12. Senna, M. (2007). Smart mechanochemistry-Charge transfer control for tailored solid-state under minimum external energy. J. Alloy. Compd. 434, 768-772. DOI: 10.1016/j. jallcom.2006.08.238.
13. Gamal, A., Hussein, M., Sheppard, N., Mohamed, I.Z. & Radamis, B.F. (1991). Infrared Spectroscopic Studies of the Reactions of Alcohols over Group IVB Metal Oxide Catalysts Part 2. Methanol over TiO2, ZrO2 and HfO2 J. Chem. Soc. Faraday Trans. 87(16), 2655-2659. DOI: 10.1039/ FT9918702655.
14. Gamal, A., Hussein M., Sheppard N., Mohamed, I.Z. & Radamis, B.F. (1991). Infrared Spectroscopic Studies of the Reactions of Alcohols over Group IVB Metal Oxide Catalysts Part 3. - Ethanol over TiO2, ZrO2 and HfO2 and General Conclusions from Parts 1 to 3. J. Chem. Soc. Faraday Trans. 87(16), 2661-2668. DOI: 10.1039/FT9918702661.
15. Reddy, K.M., Reddy, C.V.G. & Manorama, S.V. (2001) Preparation, characterization and spectral studies on nanocrystalline anatase TiO2 J. Solid State Chem. 158, 180-186. DOI: 10.1006/jssc.2001.9090.
16. Fujishima, A., Zhang, X. & Tryk, D.A. (2008). TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 63(12), 515-582. DOI: 10.1016/j.surfrep.2008.10.001.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-e0fc64b1-fb5b-4558-b8ab-84dd78353652
Identyfikatory
DOI 10.1515/pjct-2016-0061